New Research In
Physical Sciences
Social Sciences
Featured Portals
Articles by Topic
Biological Sciences
Featured Portals
Articles by Topic
- Agricultural Sciences
- Anthropology
- Applied Biological Sciences
- Biochemistry
- Biophysics and Computational Biology
- Cell Biology
- Developmental Biology
- Ecology
- Environmental Sciences
- Evolution
- Genetics
- Immunology and Inflammation
- Medical Sciences
- Microbiology
- Neuroscience
- Pharmacology
- Physiology
- Plant Biology
- Population Biology
- Psychological and Cognitive Sciences
- Sustainability Science
- Systems Biology
Shaping reverberating sound fields with an actively tunable metasurface
Edited by John B. Pendry, Imperial College London, London, United Kingdom, and approved May 15, 2018 (received for review January 22, 2018)

Significance
Wavefront shaping with spatial light modulators has recently motivated many studies in the field of light manipulation in diffusive media. Here, we extend this concept to acoustic waves by designing and building a binary phase-modulating spatial sound modulator (SSM). The SSM is an acoustic metasurface consisting of unit cells with two states, switchable through programmed electronics. We demonstrate in audible frequencies, and in a reverberating environment, the capability of controlling and reshaping any complex sound field. Our work will not only open avenues to study wave propagation in complex and chaotic media but also inspire applications in acoustic engineering.
Abstract
A reverberating environment is a common complex medium for airborne sound, with familiar examples such as music halls and lecture theaters. The complexity of reverberating sound fields has hindered their meaningful control. Here, by combining acoustic metasurface and adaptive wavefield shaping, we demonstrate the versatile control of reverberating sound fields in a room. This is achieved through the design and the realization of a binary phase-modulating spatial sound modulator that is based on an actively reconfigurable acoustic metasurface. We demonstrate useful functionalities including the creation of quiet zones and hotspots in a typical reverberating environment.
Footnotes
↵1G.M. and X.F. contributed equally to this work.
- ↵2To whom correspondence may be addressed. Email: phgcma{at}hkbu.edu.hk, sheng{at}ust.hk, or mathias.fink{at}espci.fr.
↵3Present address: School of Physics and Technology, Wuhan University, Wuhan 430072, China.
Author contributions: G.M. and M.F. designed research; G.M. and X.F. performed research; G.M., X.F., P.S., and M.F. analyzed data; and G.M., P.S., and M.F. wrote the paper.
The authors declare no conflict of interest.
This article is a PNAS Direct Submission.
This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1801175115/-/DCSupplemental.
- Copyright © 2018 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
Citation Manager Formats
Sign up for Article Alerts
Jump to section
You May Also be Interested in
More Articles of This Classification
Physical Sciences
Related Content
- No related articles found.
Cited by...
- No citing articles found.