New Research In
Physical Sciences
Social Sciences
Featured Portals
Articles by Topic
Biological Sciences
Featured Portals
Articles by Topic
- Agricultural Sciences
- Anthropology
- Applied Biological Sciences
- Biochemistry
- Biophysics and Computational Biology
- Cell Biology
- Developmental Biology
- Ecology
- Environmental Sciences
- Evolution
- Genetics
- Immunology and Inflammation
- Medical Sciences
- Microbiology
- Neuroscience
- Pharmacology
- Physiology
- Plant Biology
- Population Biology
- Psychological and Cognitive Sciences
- Sustainability Science
- Systems Biology
Biological tissue-inspired tunable photonic fluid
Edited by Andrea J. Liu, University of Pennsylvania, Philadelphia, PA, and approved May 15, 2018 (received for review September 7, 2017)

Significance
We design an amorphous material with a full photonic bandgap inspired by how cells pack in biological tissues. The size of the photonic bandgap can be manipulated through thermal and mechanical tuning. These directionally isotropic photonic bandgaps persist in solid and fluid phases, hence giving rise to a photonic fluid-like state that is robust with respect to fluid flow, rearrangements, and thermal fluctuations in contrast to traditional photonic crystals. This design should lead to the engineering of self-assembled nonrigid photonic structures with photonic bandgaps that can be controlled in real time via mechanical and thermal tuning.
Abstract
Inspired by how cells pack in dense biological tissues, we design 2D and 3D amorphous materials that possess a complete photonic bandgap. A physical parameter based on how cells adhere with one another and regulate their shapes can continuously tune the photonic bandgap size as well as the bulk mechanical properties of the material. The material can be tuned to go through a solid–fluid phase transition characterized by a vanishing shear modulus. Remarkably, the photonic bandgap persists in the fluid phase, giving rise to a photonic fluid that is robust to flow and rearrangements. Experimentally this design should lead to the engineering of self-assembled nonrigid photonic structures with photonic bandgaps that can be controlled in real time via mechanical and thermal tuning.
Footnotes
- ↵1To whom correspondence should be addressed. Email: d.bi{at}northeastern.edu.
Author contributions: D.B. designed research; X.L., A.D., and D.B. performed research; X.L., A.D., and D.B. analyzed data; and X.L., A.D., and D.B. wrote the paper.
The authors declare no conflict of interest.
This article is a PNAS Direct Submission.
This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715810115/-/DCSupplemental.
Published under the PNAS license.
Citation Manager Formats
Sign up for Article Alerts
Jump to section
You May Also be Interested in
More Articles of This Classification
Physical Sciences
Physics
Biological Sciences
Related Content
- No related articles found.
Cited by...
- No citing articles found.