Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology

Differences in neural stem cell identity and differentiation capacity drive divergent regenerative outcomes in lizards and salamanders

Aaron X. Sun, Ricardo Londono, Megan L. Hudnall, Rocky S. Tuan, and Thomas P. Lozito
PNAS August 28, 2018 115 (35) E8256-E8265; published ahead of print August 13, 2018 https://doi.org/10.1073/pnas.1803780115
Aaron X. Sun
aCenter for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219;bMedical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213;cDepartment of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15213
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ricardo Londono
aCenter for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Megan L. Hudnall
aCenter for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rocky S. Tuan
aCenter for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219;cDepartment of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15213
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas P. Lozito
aCenter for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: tpl9@pitt.edu
  1. Edited by Robb Krumlauf, Stowers Institute for Medical Research, Kansas City, MO, and approved July 24, 2018 (received for review March 2, 2018)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Significance

The evolutionary changes behind the loss in regenerative potential from salamanders to mammals remain largely elusive. Lizards, representing an intermediary species between the two, possess a limited ability to regenerate their tails. Here, we probe the mechanisms behind the differing regenerative patterns between lizards and salamanders, and we find that neural stem cells within the regenerated spinal cords are distinct cell populations that regulate divergent tail regeneration patterns. This finding sheds light on the factors that govern regenerative ability as well as the loss of this capability and brings us one step closer to eventually elucidating strategies to allow for mammalian regeneration.

Abstract

While lizards and salamanders both exhibit the ability to regenerate amputated tails, the outcomes achieved by each are markedly different. Salamanders, such as Ambystoma mexicanum, regenerate nearly identical copies of original tails. Regenerated lizard tails, however, exhibit important morphological differences compared with originals. Some of these differences concern dorsoventral patterning of regenerated skeletal and spinal cord tissues; regenerated salamander tail tissues exhibit dorsoventral patterning, while regrown lizard tissues do not. Additionally, regenerated lizard tails lack characteristically roof plate-associated structures, such as dorsal root ganglia. We hypothesized that differences in neural stem cells (NSCs) found in the ependyma of regenerated spinal cords account for these divergent regenerative outcomes. Through a combination of immunofluorescent staining, RT-PCR, hedgehog regulation, and transcriptome analysis, we analyzed NSC-dependent tail regeneration. Both salamander and lizard Sox2+ NSCs form neurospheres in culture. While salamander neurospheres exhibit default roof plate identity, lizard neurospheres exhibit default floor plate. Hedgehog signaling regulates dorsalization/ventralization of salamander, but not lizard, NSCs. Examination of NSC differentiation potential in vitro showed that salamander NSCs are capable of neural differentiation into multiple lineages, whereas lizard NSCs are not, which was confirmed by in vivo spinal cord transplantations. Finally, salamander NSCs xenogeneically transplanted into regenerating lizard tail spinal cords were influenced by native lizard NSC hedgehog signals, which favored salamander NSC floor plate differentiation. These findings suggest that NSCs in regenerated lizard and salamander spinal cords are distinct cell populations, and these differences contribute to the vastly different outcomes observed in tail regeneration.

  • lizard
  • salamander
  • neural stem cell
  • sonic hedgehog
  • differentiation

Footnotes

  • ↵1To whom correspondence should be addressed. Email: tpl9{at}pitt.edu.
  • Author contributions: A.X.S., R.S.T., and T.P.L. designed research; A.X.S., R.L., M.L.H., and T.P.L. performed research; A.X.S., R.L., M.L.H., and T.P.L. analyzed data; and A.X.S. and T.P.L. wrote the paper.

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1803780115/-/DCSupplemental.

Published under the PNAS license.

View Full Text

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

Subscribers, for more details, please visit our Subscriptions FAQ.

Please click here to log into the PNAS submission website.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Differences in neural stem cell identity and differentiation capacity drive divergent regenerative outcomes in lizards and salamanders
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
Citation Tools
Differences in neural stem cell identity and differentiation capacity drive divergent regenerative outcomes in lizards and salamanders
Aaron X. Sun, Ricardo Londono, Megan L. Hudnall, Rocky S. Tuan, Thomas P. Lozito
Proceedings of the National Academy of Sciences Aug 2018, 115 (35) E8256-E8265; DOI: 10.1073/pnas.1803780115

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Differences in neural stem cell identity and differentiation capacity drive divergent regenerative outcomes in lizards and salamanders
Aaron X. Sun, Ricardo Londono, Megan L. Hudnall, Rocky S. Tuan, Thomas P. Lozito
Proceedings of the National Academy of Sciences Aug 2018, 115 (35) E8256-E8265; DOI: 10.1073/pnas.1803780115
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 116 (8)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Materials and Methods
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

News Feature: Cities serve as testbeds for evolutionary change
Urban living can pressure flora and fauna to adapt in intriguing ways. Biologists are starting to take advantage of this convenient laboratory of evolution.
Image credit: Kristin Winchell (Washington University in St. Louis, St. Louis).
Several aspects of the proposal, which aims to expand open access, require serious discussion and, in some cases, a rethink.
Opinion: “Plan S” falls short for society publishers—and for the researchers they serve
Several aspects of the proposal, which aims to expand open access, require serious discussion and, in some cases, a rethink.
Image credit: Dave Cutler (artist).
Featured Profile
PNAS Profile of NAS member and biochemist Hao Wu
 Nonmonogamous strawberry poison frog (Oophaga pumilio).  Image courtesy of Yusan Yang (University of Pittsburgh, Pittsburgh).
Putative signature of monogamy
A study suggests a putative gene-expression hallmark common to monogamous male vertebrates of some species, namely cichlid fishes, dendrobatid frogs, passeroid songbirds, common voles, and deer mice, and identifies 24 candidate genes potentially associated with monogamy.
Image courtesy of Yusan Yang (University of Pittsburgh, Pittsburgh).
Active lifestyles. Image courtesy of Pixabay/MabelAmber.
Meaningful life tied to healthy aging
Physical and social well-being in old age are linked to self-assessments of life worth, and a spectrum of behavioral, economic, health, and social variables may influence whether aging individuals believe they are leading meaningful lives.
Image courtesy of Pixabay/MabelAmber.

More Articles of This Classification

  • Calpain drives pyroptotic vimentin cleavage, intermediate filament loss, and cell rupture that mediates immunostimulation
  • Antidepressant-relevant concentrations of the ketamine metabolite (2R,6R)-hydroxynorketamine do not block NMDA receptor function
  • Elementary response triggered by transducin in retinal rods
Show more

Related Content

  • PNAS Plus Significance Statements
  • Scopus
  • PubMed
  • Google Scholar

Cited by...

  • No citing articles found.
  • Google Scholar

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Classics
  • Front Matter
  • Teaching Resources
  • Anthropology
  • Chemistry
  • Physics
  • Sustainability Science

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Press
  • Site Map

Feedback    Privacy/Legal

Copyright © 2019 National Academy of Sciences. Online ISSN 1091-6490