New Research In
Physical Sciences
Social Sciences
Featured Portals
Articles by Topic
Biological Sciences
Featured Portals
Articles by Topic
- Agricultural Sciences
- Anthropology
- Applied Biological Sciences
- Biochemistry
- Biophysics and Computational Biology
- Cell Biology
- Developmental Biology
- Ecology
- Environmental Sciences
- Evolution
- Genetics
- Immunology and Inflammation
- Medical Sciences
- Microbiology
- Neuroscience
- Pharmacology
- Physiology
- Plant Biology
- Population Biology
- Psychological and Cognitive Sciences
- Sustainability Science
- Systems Biology
Default mode network can support the level of detail in experience during active task states
Edited by Marcus E. Raichle, Washington University in St. Louis, St. Louis, MO, and approved July 24, 2018 (received for review December 6, 2017)
This article has a correction. Please see:

Significance
Accounts of the default mode network (DMN) as task negative are partly based on evidence for a role of this system in off-task thought. We revisited the evidence for this assumption in a study combining experience sampling with functional neuroimaging. Whether thoughts were related or unrelated to an ongoing task was associated with patterns of neural activity in regions adjacent to unimodal sensorimotor cortex. In contrast, during periods of working-memory maintenance, activity patterns in the DMN were associated with whether thoughts were detailed. These results demonstrate that activity within the DMN encodes information associated with ongoing cognition that goes beyond whether attention is directed to the task, including detailed experiences during active task states.
Abstract
Regions of transmodal cortex, in particular the default mode network (DMN), have historically been argued to serve functions unrelated to task performance, in part because of associations with naturally occurring periods of off-task thought. In contrast, contemporary views of the DMN suggest it plays an integrative role in cognition that emerges from its location at the top of a cortical hierarchy and its relative isolation from systems directly involved in perception and action. The combination of these topographical features may allow the DMN to support abstract representations derived from lower levels in the hierarchy and so reflect the broader cognitive landscape. To investigate these contrasting views of DMN function, we sampled experience as participants performed tasks varying in their working-memory load while inside an fMRI scanner. We used self-report data to establish dimensions of thought that describe levels of detail, the relationship to a task, the modality of thought, and its emotional qualities. We used representational similarity analysis to examine correspondences between patterns of neural activity and each dimension of thought. Our results were inconsistent with a task-negative view of DMN function. Distinctions between on- and off-task thought were associated with patterns of consistent neural activity in regions adjacent to unimodal cortex, including motor and premotor cortex. Detail in ongoing thought was associated with patterns of activity within the DMN during periods of working-memory maintenance. These results demonstrate a contribution of the DMN to ongoing cognition extending beyond task-unrelated processing that can include detailed experiences occurring under active task conditions.
Footnotes
- ↵1To whom correspondence may be addressed. Email: mladen.sormaz{at}york.ac.uk or smallwoodjm{at}gmail.com.
Author contributions: M.S. and H.-t.W. designed research; M.S., C.M., and G.P. performed research; M.S., C.M., M.H., and T.K. contributed new reagents/analytic tools; M.S. and J.S. analyzed data; M.S., D.S.M., E.J., and J.S. wrote the paper; and D.S.M. and E.J. contributed to development of themes in the writing of the paper.
The authors declare no conflict of interest.
This article is a PNAS Direct Submission.
This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721259115/-/DCSupplemental.
- Copyright © 2018 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
Citation Manager Formats
Sign up for Article Alerts
Jump to section
You May Also be Interested in
More Articles of This Classification
Biological Sciences
Psychological and Cognitive Sciences
Related Content
Cited by...
- No citing articles found.