Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Colloquium Paper

Scientific prize network predicts who pushes the boundaries of science

View ORCID ProfileYifang Ma and Brian Uzzi
  1. aNorthwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208;
  2. bKellogg School of Management, Northwestern University, Evanston, IL 60208;
  3. cMcCormick School of Engineering, Northwestern University, Evanston, IL 60208

See allHide authors and affiliations

PNAS December 11, 2018 115 (50) 12608-12615; first published December 10, 2018; https://doi.org/10.1073/pnas.1800485115
Yifang Ma
aNorthwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208;
bKellogg School of Management, Northwestern University, Evanston, IL 60208;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yifang Ma
Brian Uzzi
aNorthwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208;
bKellogg School of Management, Northwestern University, Evanston, IL 60208;
cMcCormick School of Engineering, Northwestern University, Evanston, IL 60208
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: uzzi@northwestern.edu
  1. Edited by Paul Trunfio, Boston University, and accepted by Editorial Board Member Pablo G. Debenedetti July 24, 2018 (received for review March 1, 2018)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

Scientific prizes confer credibility to persons, ideas, and disciplines, provide financial incentives, and promote community-building celebrations. We examine the growth dynamics and interlocking relationships found in the worldwide scientific prize network. We focus on understanding how the knowledge linkages among prizes and scientists’ propensities for prizewinning relate to knowledge pathways between disciplines and stratification within disciplines. Our data cover more than 3,000 different scientific prizes in diverse disciplines and the career histories of 10,455 prizewinners worldwide for over 100 years. We find several key links between prizes and scientific advances. First, despite an explosive proliferation of prizes over time and across the globe, prizes are more concentrated within a relatively small group of scientific elites, and ties among elites are highly clustered, suggesting that a relatively constrained number of ideas and scholars push the boundaries of science. For example, 64.1% of prizewinners have won two prizes and 13.7% have won five or more prizes. Second, certain prizes strongly interlock disciplines and subdisciplines, creating key pathways by which knowledge spreads and is recognized across science. Third, genealogical and coauthorship networks predict who wins multiple prizes, which helps to explain the interconnectedness among celebrated scientists and their pathbreaking ideas.

  • Nobel
  • genealogy
  • social networks
  • science of science
  • computational social science

Footnotes

  • ↵1To whom correspondence should be addressed. Email: uzzi{at}northwestern.edu.
  • Author contributions: Y.M. and B.U. designed research, analyzed data, and wrote the paper.

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission. P.T. is a guest editor invited by the Editorial Board.

  • This paper results from the Arthur M. Sackler Colloquium of the National Academy of Sciences, “Modeling and Visualizing Science and Technology Developments,” held December 4–5, 2017, at the Arnold and Mabel Beckman Center of the National Academies of Sciences and Engineering in Irvine, CA. The complete program and video recordings of most presentations are available on the NAS website at www.nasonline.org/modeling_and_visualizing.

Published under the PNAS license.

View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Scientific prize network predicts who pushes the boundaries of science
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Scientific prize network predicts who pushes the boundaries of science
Yifang Ma, Brian Uzzi
Proceedings of the National Academy of Sciences Dec 2018, 115 (50) 12608-12615; DOI: 10.1073/pnas.1800485115

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Scientific prize network predicts who pushes the boundaries of science
Yifang Ma, Brian Uzzi
Proceedings of the National Academy of Sciences Dec 2018, 115 (50) 12608-12615; DOI: 10.1073/pnas.1800485115
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley

Article Classifications

  • Social Sciences
  • Social Sciences
Proceedings of the National Academy of Sciences: 115 (50)
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Materials and Methods
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Water from a faucet fills a glass.
News Feature: How “forever chemicals” might impair the immune system
Researchers are exploring whether these ubiquitous fluorinated molecules might worsen infections or hamper vaccine effectiveness.
Image credit: Shutterstock/Dmitry Naumov.
Reflection of clouds in the still waters of Mono Lake in California.
Inner Workings: Making headway with the mysteries of life’s origins
Recent experiments and simulations are starting to answer some fundamental questions about how life came to be.
Image credit: Shutterstock/Radoslaw Lecyk.
Cave in coastal Kenya with tree growing in the middle.
Journal Club: Small, sharp blades mark shift from Middle to Later Stone Age in coastal Kenya
Archaeologists have long tried to define the transition between the two time periods.
Image credit: Ceri Shipton.
Illustration of groups of people chatting
Exploring the length of human conversations
Adam Mastroianni and Daniel Gilbert explore why conversations almost never end when people want them to.
Listen
Past PodcastsSubscribe
Panda bear hanging in a tree
How horse manure helps giant pandas tolerate cold
A study finds that giant pandas roll in horse manure to increase their cold tolerance.
Image credit: Fuwen Wei.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Cozzarelli Prize
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490