New Research In
Physical Sciences
Social Sciences
Featured Portals
Articles by Topic
Biological Sciences
Featured Portals
Articles by Topic
- Agricultural Sciences
- Anthropology
- Applied Biological Sciences
- Biochemistry
- Biophysics and Computational Biology
- Cell Biology
- Developmental Biology
- Ecology
- Environmental Sciences
- Evolution
- Genetics
- Immunology and Inflammation
- Medical Sciences
- Microbiology
- Neuroscience
- Pharmacology
- Physiology
- Plant Biology
- Population Biology
- Psychological and Cognitive Sciences
- Sustainability Science
- Systems Biology
Fundamental bounds on learning performance in neural circuits
Edited by Terrence J. Sejnowski, Salk Institute for Biological Studies, La Jolla, CA, and approved March 4, 2019 (received for review August 3, 2018)

Significance
We show how neural circuits can use additional connectivity to achieve faster and more precise learning. Biologically, internal synaptic noise imposes an optimal size of network for learning a given task. Above the optimal size, addition of neurons and synaptic connections starts to impede learning and task performance. Overall brain size may therefore be constrained by pressure to learn effectively with unreliable synapses and may explain why certain neurological learning deficits are associated with hyperconnectivity. Beneath this optimal size, apparently redundant connections are advantageous for learning. Such apparently redundant connections have recently been observed in several species and brain areas.
Abstract
How does the size of a neural circuit influence its learning performance? Larger brains tend to be found in species with higher cognitive function and learning ability. Intuitively, we expect the learning capacity of a neural circuit to grow with the number of neurons and synapses. We show how adding apparently redundant neurons and connections to a network can make a task more learnable. Consequently, large neural circuits can either devote connectivity to generating complex behaviors or exploit this connectivity to achieve faster and more precise learning of simpler behaviors. However, we show that in a biologically relevant setting where synapses introduce an unavoidable amount of noise, there is an optimal size of network for a given task. Above the optimal network size, the addition of neurons and synaptic connections starts to impede learning performance. This suggests that the size of brain circuits may be constrained by the need to learn efficiently with unreliable synapses and provides a hypothesis for why some neurological learning deficits are associated with hyperconnectivity. Our analysis is independent of specific learning rules and uncovers fundamental relationships between learning rate, task performance, network size, and intrinsic noise in neural circuits.
Footnotes
- ↵1To whom correspondence may be addressed. Email: tso24{at}cam.ac.uk or dvr23{at}cam.ac.uk.
Author contributions: D.V.R. and T.O. designed research; D.V.R. and A.P.R. performed research; D.V.R., A.P.R., and T.O. analyzed data; D.V.R. and T.O. wrote the paper; and T.O. interpreted results.
The authors declare no conflict of interest.
This article is a PNAS Direct Submission.
Data deposition: Code for figure simulations in this paper is available at https://github.com/olearylab/raman_etal_2018.
This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1813416116/-/DCSupplemental.
- Copyright © 2019 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
Citation Manager Formats
Sign up for Article Alerts
Article Classifications
- Biological Sciences
- Neuroscience














