Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries

View ORCID ProfileMegan K. Morikawa and Stephen R. Palumbi
PNAS May 21, 2019 116 (21) 10586-10591; first published May 6, 2019; https://doi.org/10.1073/pnas.1721415116
Megan K. Morikawa
aDepartment of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Megan K. Morikawa
Stephen R. Palumbi
aDepartment of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: spalumbi@stanford.edu
  1. Contributed by Stephen R. Palumbi, February 27, 2019 (sent for review December 11, 2017; reviewed by Andrew C. Baker, Les Kaufman, and Nancy Knowlton)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

Coral reefs are threatened by global bleaching, spurring a need to improve upon reef restoration practices. Yet the strong capacity for corals and their symbionts to acclimatize to their local environment has brought into question whether or not corals that are temperature tolerant in one setting will lose that tolerance elsewhere. We show that variation in bleaching resilience among intraspecific colonies is maintained in novel environments for four species, and can be used to construct bleaching-resistant coral nurseries for restoration. By focusing on the host genotype and symbiont genus and its importance in stock selection, we demonstrate a path forward for reef restoration in the face of climate change.

Abstract

Ecological restoration of forests, meadows, reefs, or other foundational ecosystems during climate change depends on the discovery and use of individuals able to withstand future conditions. For coral reefs, climate-tolerant corals might not remain tolerant in different environments because of widespread environmental adjustment of coral physiology and symbionts. Here, we test if parent corals retain their heat tolerance in nursery settings, if simple proxies predict successful colonies, and if heat-tolerant corals suffer lower growth or survival in normal settings. Before the 2015 natural bleaching event in American Samoa, we set out 800 coral fragments from 80 colonies of four species selected by prior tests to have a range of intraspecific natural heat tolerance. After the event, nursery stock from heat-tolerant parents showed two to three times less bleaching across species than nursery stock from less tolerant parents. They also retained higher individual genetic diversity through the bleaching event than did less heat-tolerant corals. The three best proxies for thermal tolerance were response to experimental heat stress, location on the reef, and thermal microclimate. Molecular biomarkers were also predictive but were highly species specific. Colony genotype and symbiont genus played a similarly strong role in predicting bleaching. Combined, our results show that selecting for host and symbiont resilience produced a multispecies coral nursery that withstood multiple bleaching events, that proxies for thermal tolerance in restoration can work across species and be inexpensive, and that different coral clones within species reacted very differently to bleaching.

  • coral resilience
  • climate change
  • bleaching
  • American Samoa
  • restoration

Footnotes

  • ↵1To whom correspondence should be addressed. Email: spalumbi{at}stanford.edu.
  • Author contributions: M.K.M. and S.R.P. designed research; M.K.M. performed research; M.K.M. and S.R.P. analyzed data; and M.K.M. and S.R.P. wrote the paper.

  • Reviewers: A.C.B., University of Miami; L.K., Boston University; and N.K., Smithsonian Institution.

  • The authors declare no conflict of interest.

  • Data deposition: BioProject accession numbers for Sequence Read Archive of the fastq files are available at PRJNA529901 for Acropora gemmifera, PRJNA529902 for Pocillopora damicornis, and PRJNA529904 for Acropora hyacinthus.

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721415116/-/DCSupplemental.

  • Copyright © 2019 the Author(s). Published by PNAS.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries
Megan K. Morikawa, Stephen R. Palumbi
Proceedings of the National Academy of Sciences May 2019, 116 (21) 10586-10591; DOI: 10.1073/pnas.1721415116

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries
Megan K. Morikawa, Stephen R. Palumbi
Proceedings of the National Academy of Sciences May 2019, 116 (21) 10586-10591; DOI: 10.1073/pnas.1721415116
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 116 (21)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Biological Sciences
  • Sustainability Science

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Materials and Methods
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Abstract depiction of a guitar and musical note
Science & Culture: At the nexus of music and medicine, some see disease treatments
Although the evidence is still limited, a growing body of research suggests music may have beneficial effects for diseases such as Parkinson’s.
Image credit: Shutterstock/agsandrew.
Large piece of gold
News Feature: Tracing gold's cosmic origins
Astronomers thought they’d finally figured out where gold and other heavy elements in the universe came from. In light of recent results, they’re not so sure.
Image credit: Science Source/Tom McHugh.
Dancers in red dresses
Journal Club: Friends appear to share patterns of brain activity
Researchers are still trying to understand what causes this strong correlation between neural and social networks.
Image credit: Shutterstock/Yeongsik Im.
White and blue bird
Hazards of ozone pollution to birds
Amanda Rodewald, Ivan Rudik, and Catherine Kling talk about the hazards of ozone pollution to birds.
Listen
Past PodcastsSubscribe
Goats standing in a pin
Transplantation of sperm-producing stem cells
CRISPR-Cas9 gene editing can improve the effectiveness of spermatogonial stem cell transplantation in mice and livestock, a study finds.
Image credit: Jon M. Oatley.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490