Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Invasive grasses increase fire occurrence and frequency across US ecoregions

View ORCID ProfileEmily J. Fusco, John T. Finn, Jennifer K. Balch, R. Chelsea Nagy, and View ORCID ProfileBethany A. Bradley
PNAS November 19, 2019 116 (47) 23594-23599; first published November 4, 2019 https://doi.org/10.1073/pnas.1908253116
Emily J. Fusco
aGraduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Emily J. Fusco
  • For correspondence: efusco@cns.umass.edu
John T. Finn
bDepartment of Environmental Conservation, University of Massachusetts, Amherst, MA 01003;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jennifer K. Balch
cEarth Lab, University of Colorado, Boulder, CO 80309;dDepartment of Geography, University of Colorado, Boulder, CO 80309
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Chelsea Nagy
cEarth Lab, University of Colorado, Boulder, CO 80309;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bethany A. Bradley
aGraduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003;bDepartment of Environmental Conservation, University of Massachusetts, Amherst, MA 01003;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Bethany A. Bradley
  1. Edited by David Bowman, University of Tasmania, Hobart, Tasmania, and accepted by Editorial Board Member Ruth S. DeFries October 1, 2019 (received for review May 17, 2019)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Significance

One of the most notorious impacts of nonnative, invasive grasses is the alteration of fire regimes. Yet, most evidence of these impacts comes from local-scale studies, making it unclear whether they have broader implications for national and regional fire management. Our analysis of 12 invasive grasses documents regional-scale alteration of fire regimes for 8 species, which are already increasing fire occurrence by up to 230% and fire frequency by up to 150%. These impacts were demonstrated across US ecoregions and vegetation types, suggesting that many ecosystems are vulnerable to a novel grass-fire cycle. Managing existing grass invasions and preventing future introductions presents a key opportunity to remediate the ecological and economic consequences of invasive species and fire.

Abstract

Fire-prone invasive grasses create novel ecosystem threats by increasing fine-fuel loads and continuity, which can alter fire regimes. While the existence of an invasive grass-fire cycle is well known, evidence of altered fire regimes is typically based on local-scale studies or expert knowledge. Here, we quantify the effects of 12 nonnative, invasive grasses on fire occurrence, size, and frequency across 29 US ecoregions encompassing more than one third of the conterminous United States. These 12 grass species promote fire locally and have extensive spatial records of abundant infestations. We combined agency and satellite fire data with records of abundant grass invasion to test for differences in fire regimes between invaded and nearby “uninvaded” habitat. Additionally, we assessed whether invasive grass presence is a significant predictor of altered fire by modeling fire occurrence, size, and frequency as a function of grass invasion, in addition to anthropogenic and ecological covariates relevant to fire. Eight species showed significantly higher fire-occurrence rates, which more than tripled for Schismus barbatus and Pennisetum ciliare. Six species demonstrated significantly higher mean fire frequency, which more than doubled for Neyraudia reynaudiana and Pennisetum ciliare. Grass invasion was significant in fire occurrence and frequency models, but not in fire-size models. The significant differences in fire regimes, coupled with the importance of grass invasion in modeling these differences, suggest that invasive grasses alter US fire regimes at regional scales. As concern about US wildfires grows, accounting for fire-promoting invasive grasses will be imperative for effectively managing ecosystems.

  • invasive grass
  • nonnative plant
  • fire regime
  • grass-fire cycle

Footnotes

  • ↵1To whom correspondence may be addressed. Email: efusco{at}cns.umass.edu.
  • Author contributions: E.J.F. and B.A.B. designed research; E.J.F. and B.A.B. performed research; E.J.F. and J.T.F. analyzed data; and E.J.F., J.T.F., J.K.B., R.C.N., and B.A.B. wrote the paper.

  • The authors declare no competing interest.

  • This article is a PNAS Direct Submission. D.B. is a guest editor invited by the Editorial Board.

  • Data deposition: Data are available at UMass Scholarworks (DOI: 10.7275/ndsz-eh64).

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908253116/-/DCSupplemental.

Published under the PNAS license.

View Full Text

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

Subscribers, for more details, please visit our Subscriptions FAQ.

Please click here to log into the PNAS submission website.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Invasive grasses increase fire occurrence and frequency across US ecoregions
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
Citation Tools
Invasive grasses increase fire occurrence and frequency across US ecoregions
Emily J. Fusco, John T. Finn, Jennifer K. Balch, R. Chelsea Nagy, Bethany A. Bradley
Proceedings of the National Academy of Sciences Nov 2019, 116 (47) 23594-23599; DOI: 10.1073/pnas.1908253116

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Invasive grasses increase fire occurrence and frequency across US ecoregions
Emily J. Fusco, John T. Finn, Jennifer K. Balch, R. Chelsea Nagy, Bethany A. Bradley
Proceedings of the National Academy of Sciences Nov 2019, 116 (47) 23594-23599; DOI: 10.1073/pnas.1908253116
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 116 (49)
Current Issue

Submit

Sign up for Article Alerts

Article Classifications

  • Biological Sciences
  • Environmental Sciences

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Materials and Methods
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Modulating the body's networks could become mainstream therapy for many health issues. Image credit: The Feinstein Institutes for Medicine Research.
Core Concept: The rise of bioelectric medicine sparks interest among researchers, patients, and industry
Modulating the body's networks could become mainstream therapy for many health issues.
Image credit: The Feinstein Institutes for Medicine Research.
Adaptations in heart structure and function likely enabled endurance and survival in preindustrial humans. Image courtesy of Pixabay/Skeeze.
Human heart evolved for endurance
Adaptations in heart structure and function likely enabled endurance and survival in preindustrial humans.
Image courtesy of Pixabay/Skeeze.
Viscoelastic carrier fluids enhance retention of fire retardants on wildfire-prone vegetation. Image courtesy of Jesse D. Acosta.
Viscoelastic fluids and wildfire prevention
Viscoelastic carrier fluids enhance retention of fire retardants on wildfire-prone vegetation.
Image courtesy of Jesse D. Acosta.
Water requirements may make desert bird declines more likely in a warming climate. Image courtesy of Sean Peterson (photographer).
Climate change and desert bird collapse
Water requirements may make desert bird declines more likely in a warming climate.
Image courtesy of Sean Peterson (photographer).
QnAs with NAS member and plant biologist Sheng Yang He. Image courtesy of Sheng Yang He.
Featured QnAs
QnAs with NAS member and plant biologist Sheng Yang He
Image courtesy of Sheng Yang He.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Classics
  • Front Matter
  • Teaching Resources
  • Anthropology
  • Chemistry
  • Physics
  • Sustainability Science

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2019 National Academy of Sciences. Online ISSN 1091-6490