New Research In
Physical Sciences
Social Sciences
Featured Portals
Articles by Topic
Biological Sciences
Featured Portals
Articles by Topic
- Agricultural Sciences
- Anthropology
- Applied Biological Sciences
- Biochemistry
- Biophysics and Computational Biology
- Cell Biology
- Developmental Biology
- Ecology
- Environmental Sciences
- Evolution
- Genetics
- Immunology and Inflammation
- Medical Sciences
- Microbiology
- Neuroscience
- Pharmacology
- Physiology
- Plant Biology
- Population Biology
- Psychological and Cognitive Sciences
- Sustainability Science
- Systems Biology
Early intraneuronal amyloid triggers neuron-derived inflammatory signaling in APP transgenic rats and human brain
Edited by Tomas G. M. Hökfelt, Karolinska Institutet, Stockholm, Sweden, and approved February 7, 2020 (received for review August 22, 2019)

Significance
This work provides evidence that soluble and oligomeric amyloid protein stokes neuronal inflammation during the earliest stages of Alzheimer’s disease. Identifying neuron-derived factors that engage the brain’s immune system will provide insight into how vulnerable neurons might interact with other immune cells to propagate cytotoxic signaling cascades and cellular dysfunction during disease development.
Abstract
Chronic inflammation during Alzheimer’s disease (AD) is most often attributed to sustained microglial activation in response to amyloid-β (Aβ) plaque deposits and cell death. However, cytokine release and microgliosis are consistently observed in AD transgenic animal models devoid of such pathologies, bringing into question the underlying processes that may be at play during the earliest AD-related immune response. We propose that this plaque-independent inflammatory reaction originates from neurons burdened with increasing levels of soluble and oligomeric Aβ, which are known to be the most toxic amyloid species within the brain. Laser microdissected neurons extracted from preplaque amyloid precursor protein (APP) transgenic rats were found to produce a variety of potent immune factors, both at the transcript and protein levels. Neuron-derived cytokines correlated with the extent of microglial activation and mobilization, even in the absence of extracellular plaques and cell death. Importantly, we identified an inflammatory profile unique to Aβ-burdened neurons, since neighboring glial cells did not express similar molecules. Moreover, we demonstrate within disease-vulnerable regions of the human brain that a neuron-specific inflammatory response may precede insoluble Aβ plaque and tau tangle formation. Thus, we reveal the Aβ-burdened neuron as a primary proinflammatory agent, implicating the intraneuronal accumulation of Aβ as a significant immunological component in the AD pathogenesis.
Footnotes
- ↵1To whom correspondence may be addressed. Email: claudio.cuello{at}mcgill.ca.
Author contributions: L.A.W., S.D.C., and A.C.C. designed research; L.A.W., S.D.C., Z.M., J.C.M., and J.L. performed research; Z.M., J.L., W.L.K., and T.F. contributed new reagents/analytic tools; L.A.W., S.D.C., and J.C.M. analyzed data; and L.A.W., S.D.C., and A.C.C. wrote the paper.
The authors declare no competing interest.
This article is a PNAS Direct Submission.
This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1914593117/-/DCSupplemental.
- Copyright © 2020 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
Citation Manager Formats
Sign up for Article Alerts
Article Classifications
- Biological Sciences
- Neuroscience