New Research In
Physical Sciences
Social Sciences
Featured Portals
Articles by Topic
Biological Sciences
Featured Portals
Articles by Topic
- Agricultural Sciences
- Anthropology
- Applied Biological Sciences
- Biochemistry
- Biophysics and Computational Biology
- Cell Biology
- Developmental Biology
- Ecology
- Environmental Sciences
- Evolution
- Genetics
- Immunology and Inflammation
- Medical Sciences
- Microbiology
- Neuroscience
- Pharmacology
- Physiology
- Plant Biology
- Population Biology
- Psychological and Cognitive Sciences
- Sustainability Science
- Systems Biology
Introduced herbivores restore Late Pleistocene ecological functions
Edited by James A. Estes, University of California, Santa Cruz, CA, and approved February 21, 2020 (received for review September 10, 2019)
This article has a Correction. Please see:

Significance
Humans have caused extinctions of large-bodied mammalian herbivores over the past ∼100,000 y, leading to cascading changes in ecosystems. Conversely, introductions of herbivores have, in part, numerically compensated for extinction losses. However, the net outcome of the twin anthropogenic forces of extinction and introduction on herbivore assemblages has remained unknown. We found that a primary outcome of introductions has been the reintroduction of key ecological functions, making herbivore assemblages with nonnative species more similar to preextinction ones than native-only assemblages are. Our findings support calls for renewed research on introduced herbivore ecologies in light of paleoecological change and suggest that shifting focus from eradication to landscape and predator protection may have broader biodiversity benefits.
Abstract
Large-bodied mammalian herbivores dominated Earth’s terrestrial ecosystems for several million years before undergoing substantial extinctions and declines during the Late Pleistocene (LP) due to prehistoric human impacts. The decline of large herbivores led to widespread ecological changes due to the loss of their ecological functions, as driven by their unique combinations of traits. However, recently, humans have significantly increased herbivore species richness through introductions in many parts of the world, potentially counteracting LP losses. Here, we assessed the extent to which introduced herbivore species restore lost—or contribute novel—functions relative to preextinction LP assemblages. We constructed multidimensional trait spaces using a trait database for all extant and extinct mammalian herbivores ≥10 kg known from the earliest LP (∼130,000 ybp) to the present day. Extinction-driven contractions of LP trait space have been offset through introductions by ∼39% globally. Analysis of trait space overlap reveals that assemblages with introduced species are overall more similar to those of the LP than native-only assemblages. This is because 64% of introduced species are more similar to extinct rather than extant species within their respective continents. Many introduced herbivores restore trait combinations that have the capacity to influence ecosystem processes, such as wildfire and shrub expansion in drylands. Although introduced species have long been a source of contention, our findings indicate that they may, in part, restore ecological functions reflective of the past several million years before widespread human-driven extinctions.
Footnotes
- ↵1To whom correspondence may be addressed. Email: erick.lundgren{at}student.uts.edu.au.
Author contributions: E.J.L., D.R., J.R., O.M., S.D.S., S.P.C., M.D., C.J.S., J.-C.S., and A.D.W. designed research; E.J.L. performed research; E.J.L., J.R., O.M., and S.D.S. analyzed data; E.J.L., D.R., J.R., O.M., S.D.S., O.S., S.P.C., M.D., C.J.S., J.-C.S., and A.D.W. wrote the paper; and O.S. designed and illustrated figures.
The authors declare no competing interest.
This article is a PNAS Direct Submission.
This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1915769117/-/DCSupplemental.
Published under the PNAS license.
Citation Manager Formats
Sign up for Article Alerts
Article Classifications
- Biological Sciences
- Ecology