A Triassic stem-salamander from Kyrgyzstan and the origin of salamanders
See allHide authors and affiliations
Edited by Neil H. Shubin, University of Chicago, Chicago, IL, and approved April 3, 2020 (received for review January 24, 2020)

Significance
The origin of modern amphibians remains controversial, and especially the fossil record of salamanders remains poor. Their tiny, feeble skeletons are rarely preserved in rocks of the early Mesozoic era, the time frame in which they are believed to have originated. Here we report 230 million-year-old fossils from Kyrgyzstan, Inner Asia, providing the most ancient evidence of salamanders. They enable us to reconstruct crucial steps in the evolution of the salamander body plan, sharing numerous features with ancient amphibians, the temnospondyls. These finds push back the rock record of salamanders by 60 to 74 Ma and at the same time bridge the wide anatomic gap among salamanders, frogs, and temnospondyls.
Abstract
The origin of extant amphibians remains largely obscure, with only a few early Mesozoic stem taxa known, as opposed to a much better fossil record from the mid-Jurassic on. In recent time, anurans have been traced back to Early Triassic forms and caecilians have been traced back to the Late Jurassic Eocaecilia, both of which exemplify the stepwise acquisition of apomorphies. Yet the most ancient stem-salamanders, known from mid-Jurassic rocks, shed little light on the origin of the clade. The gap between salamanders and other lissamphibians, as well as Paleozoic tetrapods, remains considerable. Here we report a new specimen of Triassurus sixtelae, a hitherto enigmatic tetrapod from the Middle/Late Triassic of Kyrgyzstan, which we identify as the geologically oldest stem-group salamander. This sheds light not only on the early evolution of the salamander body plan, but also on the origin of the group as a whole. The new, second specimen is derived from the same beds as the holotype, the Madygen Formation of southwestern Kyrgyzstan. It reveals a range of salamander characters in this taxon, pushing back the rock record of urodeles by at least 60 to 74 Ma (Carnian–Bathonian). In addition, this stem-salamander shares plesiomorphic characters with temnospondyls, especially branchiosaurids and amphibamiforms.
Footnotes
- ↵1To whom correspondence may be addressed. Email: rainer.schoch{at}smns-bw.de.
Author contributions: R.R.S. designed research; R.R.S., R.W., and S.V. performed research; R.R.S. and R.W. analyzed data; R.R.S. wrote the paper; and S.V. collected material.
The authors declare no competing interest.
This article is a PNAS Direct Submission.
This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2001424117/-/DCSupplemental.
Published under the PNAS license.
Citation Manager Formats
Article Classifications
- Biological Sciences
- Evolution