Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

Global increase in major tropical cyclone exceedance probability over the past four decades

James P. Kossin, View ORCID ProfileKenneth R. Knapp, Timothy L. Olander, and View ORCID ProfileChristopher S. Velden
  1. aCenter for Weather and Climate, National Centers for Environmental Information, National Oceanic and Atmospheric Administration, Madison, WI 53706;
  2. bCenter for Weather and Climate, National Centers for Environmental Information, National Oceanic and Atmospheric Administration, Asheville, NC 28801;
  3. cCooperative Institute for Meteorological Satellite Studies, University of Wisconsin-Madison, Madison, WI 53706

See allHide authors and affiliations

PNAS June 2, 2020 117 (22) 11975-11980; first published May 18, 2020; https://doi.org/10.1073/pnas.1920849117
James P. Kossin
aCenter for Weather and Climate, National Centers for Environmental Information, National Oceanic and Atmospheric Administration, Madison, WI 53706;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: james.kossin@noaa.gov
Kenneth R. Knapp
bCenter for Weather and Climate, National Centers for Environmental Information, National Oceanic and Atmospheric Administration, Asheville, NC 28801;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kenneth R. Knapp
Timothy L. Olander
cCooperative Institute for Meteorological Satellite Studies, University of Wisconsin-Madison, Madison, WI 53706
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christopher S. Velden
cCooperative Institute for Meteorological Satellite Studies, University of Wisconsin-Madison, Madison, WI 53706
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Christopher S. Velden
  1. Edited by Benjamin D. Santer, Lawrence Livermore National Laboratory, Livermore, CA, and approved April 10, 2020 (received for review November 26, 2019)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

Tropical cyclones (TCs), and particularly major TCs, pose substantial risk to many regions around the globe. Identifying changes in this risk and determining causal factors for the changes is a critical element for taking steps toward adaptation. Theory and numerical models consistently link increasing TC intensity to a warming world, but confidence in this link is compromised by difficulties in detecting significant intensity trends in observations. These difficulties are largely caused by known heterogeneities in the past instrumental records of TCs. Here we address and reduce these heterogeneities and identify significant global trends in TC intensity over the past four decades. The results should serve to increase confidence in projections of increased TC intensity under continued warming.

Abstract

Theoretical understanding of the thermodynamic controls on tropical cyclone (TC) wind intensity, as well as numerical simulations, implies a positive trend in TC intensity in a warming world. The global instrumental record of TC intensity, however, is known to be heterogeneous in both space and time and is generally unsuitable for global trend analysis. To address this, a homogenized data record based on satellite data was previously created for the period 1982–2009. The 28-y homogenized record exhibited increasing global TC intensity trends, but they were not statistically significant at the 95% confidence level. Based on observed trends in the thermodynamic mean state of the tropical environment during this period, however, it was argued that the 28-y period was likely close to, but shorter than, the time required for a statistically significant positive global TC intensity trend to appear. Here the homogenized global TC intensity record is extended to the 39-y period 1979–2017, and statistically significant (at the 95% confidence level) increases are identified. Increases and trends are found in the exceedance probability and proportion of major (Saffir−Simpson categories 3 to 5) TC intensities, which is consistent with expectations based on theoretical understanding and trends identified in numerical simulations in warming scenarios. Major TCs pose, by far, the greatest threat to lives and property. Between the early and latter halves of the time period, the major TC exceedance probability increases by about 8% per decade, with a 95% CI of 2 to 15% per decade.

  • tropical cyclone
  • hurricane
  • intensity
  • trend
  • climate

Footnotes

  • ↵1To whom correspondence may be addressed. Email: james.kossin{at}noaa.gov.
  • Author contributions: J.P.K. designed research; J.P.K., K.R.K., T.L.O., and C.S.V. performed research; J.P.K. analyzed data; J.P.K. wrote the paper; K.R.K. developed the Hurricane Satellite (HURSAT) data; and T.L.O. and C.S.V. applied the advanced Dvorak Technique (ADT) algorithm to the HURSAT data.

  • The authors declare no competing interest.

  • This article is a PNAS Direct Submission.

  • See online for related content such as Commentaries.

  • This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1920849117/-/DCSupplemental.

Published under the PNAS license.

View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Global increase in major tropical cyclone exceedance probability over the past four decades
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Global increase in major tropical cyclone exceedance probability over the past four decades
James P. Kossin, Kenneth R. Knapp, Timothy L. Olander, Christopher S. Velden
Proceedings of the National Academy of Sciences Jun 2020, 117 (22) 11975-11980; DOI: 10.1073/pnas.1920849117

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Global increase in major tropical cyclone exceedance probability over the past four decades
James P. Kossin, Kenneth R. Knapp, Timothy L. Olander, Christopher S. Velden
Proceedings of the National Academy of Sciences Jun 2020, 117 (22) 11975-11980; DOI: 10.1073/pnas.1920849117
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley

Article Classifications

  • Physical Sciences
  • Earth, Atmospheric, and Planetary Sciences

See related content:

  • Evidence that hurricanes are getting stronger
    - May 29, 2020
  • Nitrogen-responsive transcription factor kinetics meter plant growth
    - May 29, 2020
Proceedings of the National Academy of Sciences: 117 (22)
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Methods
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Model of the Amazon forest
News Feature: A sea in the Amazon
Did the Caribbean sweep into the western Amazon millions of years ago, shaping the region’s rich biodiversity?
Image credit: Tacio Cordeiro Bicudo (University of São Paulo, São Paulo, Brazil), Victor Sacek (University of São Paulo, São Paulo, Brazil), and Lucy Reading-Ikkanda (artist).
Syrian archaeological site
Journal Club: In Mesopotamia, early cities may have faltered before climate-driven collapse
Settlements 4,200 years ago may have suffered from overpopulation before drought and lower temperatures ultimately made them unsustainable.
Image credit: Andrea Ricci.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Birds nestling on tree branches
Parent–offspring conflict in songbird fledging
Some songbird parents might improve their own fitness by manipulating their offspring into leaving the nest early, at the cost of fledgling survival, a study finds.
Image credit: Gil Eckrich (photographer).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490