Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

A folding reaction at the C-terminal domain drives temperature sensing in TRPM8 channels

Ignacio Díaz-Franulic, View ORCID ProfileNatalia Raddatz, View ORCID ProfileKaren Castillo, View ORCID ProfileFernando D. González-Nilo, and View ORCID ProfileRamon Latorre
PNAS August 18, 2020 117 (33) 20298-20304; first published August 3, 2020; https://doi.org/10.1073/pnas.2004303117
Ignacio Díaz-Franulic
aCentro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile, 2340000;
bCenter for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile, 8370146
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: ignacio.diaz@unab.cl ramon.latorre@uv.cl
Natalia Raddatz
aCentro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile, 2340000;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Natalia Raddatz
Karen Castillo
aCentro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile, 2340000;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Karen Castillo
Fernando D. González-Nilo
aCentro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile, 2340000;
bCenter for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile, 8370146
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Fernando D. González-Nilo
Ramon Latorre
aCentro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile, 2340000;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ramon Latorre
  • For correspondence: ignacio.diaz@unab.cl ramon.latorre@uv.cl
  1. Contributed by Ramón Latorre, June 18, 2020 (sent for review March 9, 2020; reviewed by Feng Qin and Thomas Voets)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

Sensory and homeostatic responses in several organisms depend on the exquisite temperature dependence of ion channels of the transient receptor potential family (thermo-TRP). To date, this temperature dependence has been explained either in terms of the existence of a dedicated temperature sensor or by the increase in the molar heat capacity during channel gating. We found that the Carboxy Terminus Domain (CTD) is required for temperature-driven gating of the cold-activated TRPM8 channel and that this domain folds in response to cold. Here we propose that the CTD of the TRPM8 channel is a bona fide temperature sensor that drives channel gating due to an increase in the molar heat capacity during the folded-to-unfolded transition.

Abstract

In mammals, temperature-sensitive TRP channels make membrane conductance of cells extremely temperature dependent, allowing the detection of temperature ranging from noxious cold to noxious heat. We progressively deleted the distal carboxyl terminus domain (CTD) of the cold-activated melastatin receptor channel, TRPM8. We found that the enthalpy change associated with channel gating is proportional to the length of the CTD. Deletion of the last 36 amino acids of the CTD transforms TRPM8 into a reduced temperature-sensitivity channel (Q10 ∼4). Exposing the intracellular domain to a denaturing agent increases the energy required to open the channel indicating that cold drives channel gating by stabilizing the folded state of the CTD. Experiments in the presence of an osmoticant agent suggest that channel gating involves a change in solute-inaccessible volume in the CTD of ∼1,900 Å3. This volume matches the void space inside the coiled coil according to the cryogenic electron microscopy structure of TRPM8. The results indicate that a folding–unfolding reaction of a specialized temperature-sensitive structure is coupled to TRPM8 gating.

  • TRPM8
  • temperature sensor
  • heat capacity
  • coiled coil
  • protein folding

Footnotes

  • ↵1To whom correspondence may be addressed. Email: ignacio.diaz{at}unab.cl, or ramon.latorre{at}uv.cl.
  • ↵2Present address: Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville-41092, Spain

  • Author contributions: I.D.-F. and R.L. designed research; I.D.-F., N.R., and K.C. performed research; I.D.-F., N.R., K.C., F.G.-N., and R.L. analyzed data; and I.D.-F. and R.L. wrote the paper.

  • Reviewers: F.Q., State University of New York at Buffalo; and T.V., Katholieke Universiteit Leuven.

  • The authors declare no competing interest.

  • This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2004303117/-/DCSupplemental.

Data Availability.

All study data are included in the article and SI Appendix.

Published under the PNAS license.

View Full Text

References

  1. ↵
    1. T. Voets,
    2. K. Talavera,
    3. G. Owsianik,
    4. B. Nilius
    , Sensing with TRP channels. Nat. Chem. Biol. 1, 85–92 (2005).
    OpenUrlCrossRefPubMed
  2. ↵
    1. Q. Feng
    , Temperature sensing by thermal TRP channels: Thermodynamic basis and molecular insights. Curr. Top. Membr. 74, 19–50 (2014).
    OpenUrl
  3. ↵
    1. D. E. Clapham,
    2. L. W. Runnels,
    3. C. Strübing
    , The TRP ion channel family. Nat. Rev. Neurosci. 2, 387–396 (2001).
    OpenUrlCrossRefPubMed
  4. ↵
    1. Y. Liu,
    2. N. Qin
    , TRPM8 in health and disease: Cold sensing and beyond. Adv. Exp. Med. Biol. 704, 185–208 (2011).
    OpenUrlCrossRefPubMed
  5. ↵
    1. T. Voets et al.
    , The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430, 748–754 (2004).
    OpenUrlCrossRefPubMed
  6. ↵
    1. B. Liu,
    2. F. Qin
    , Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4,5-bisphosphate. J. Neurosci. 25, 1674–1681 (2005).
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. T. Rohács,
    2. C. M. Lopes,
    3. I. Michailidis,
    4. D. E. Logothetis
    , PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat. Neurosci. 8, 626–634 (2005).
    OpenUrlCrossRefPubMed
  8. ↵
    1. A. M. Peier et al.
    , A TRP channel that senses cold stimuli and menthol. Cell 108, 705–715 (2002).
    OpenUrlCrossRefPubMed
  9. ↵
    1. M. M. Diver,
    2. Y. Cheng,
    3. D. Julius
    , Structural insights into TRPM8 inhibition and desensitization. Science 365, 1434–1440 (2019).
    OpenUrlAbstract/FREE Full Text
  10. ↵
    1. I. Erler et al.
    , Trafficking and assembly of the cold-sensitive TRPM8 channel. J. Biol. Chem. 281, 38396–38404 (2006).
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. E. Cao,
    2. M. Liao,
    3. Y. Cheng,
    4. D. Julius
    , TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504, 113–118 (2013).
    OpenUrlCrossRefPubMed
  12. ↵
    1. C. E. Paulsen,
    2. J. P. Armache,
    3. Y. Gao,
    4. Y. Cheng,
    5. D. Julius
    , Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature 520, 511–517 (2015).
    OpenUrlCrossRefPubMed
  13. ↵
    1. L. Zubcevic et al.
    , Cryo-electron microscopy structure of the TRPV2 ion channel. Nat. Struct. Mol. Biol. 23, 180–186 (2016).
    OpenUrlCrossRefPubMed
  14. ↵
    1. A. K. Singh,
    2. L. L. McGoldrick,
    3. A. I. Sobolevsky
    , Structure and gating mechanism of the transient receptor potential channel TRPV3. Nat. Struct. Mol. Biol. 25, 805–813 (2018).
    OpenUrlCrossRefPubMed
  15. ↵
    1. Y. Yin et al.
    , Structure of the cold- and menthol-sensing ion channel TRPM8. Science 359, 237–241 (2018).
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. M. García-Ávila,
    2. L. D. Islas
    , What is new about mild temperature sensing? A review of recent findings. Temperature 6, 132–141 (2019).
    OpenUrl
  17. ↵
    1. I. Diaz-Franulic,
    2. H. Poblete,
    3. G. Miño-Galaz,
    4. C. González,
    5. R. Latorre
    , Allosterism and structure in thermally activated transient receptor potential channels. Annu. Rev. Biophys. 45, 371–398 (2016).
    OpenUrl
  18. ↵
    1. T. L. R. Emir
    1. L. D. Islas,
    “Molecular mechanisms of temperature gating in TRP channels” in Neurobiology of TRP Channels, T. L. R. Emir, Ed. (Press/Taylor & Francis, Boca Raton, FL, 2017), pp. 11–25.
  19. ↵
    1. D. E. Clapham,
    2. C. Miller
    , A thermodynamic framework for understanding temperature sensing by transient receptor potential (TRP) channels. Proc. Natl. Acad. Sci. U.S.A. 108, 19492–19497 (2011).
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. L. Moparthi et al.
    , Human TRPA1 is a heat sensor displaying intrinsic U-shaped thermosensitivity. Sci. Rep. 6, 28763 (2016).
    OpenUrlCrossRefPubMed
  21. ↵
    1. O. Gal-Mor,
    2. Y. Valdez,
    3. B. B. Finlay
    , The temperature-sensing protein TlpA is repressed by PhoP and dispensable for virulence of Salmonella enterica serovar Typhimurium in mice. Microbes Infect. 8, 2154–2162 (2006).
    OpenUrlCrossRefPubMed
  22. ↵
    1. E. Saita et al.
    , A coiled coil switch mediates cold sensing by the thermosensory protein DesK. Mol. Microbiol. 98, 258–271 (2015).
    OpenUrlCrossRefPubMed
  23. ↵
    1. D. I. Piraner,
    2. Y. Wu,
    3. M. G. Shapiro
    , Modular thermal control of protein dimerization. ACS Synth. Biol. 8, 2256–2262 (2019).
    OpenUrl
  24. ↵
    1. C. Arrigoni et al.
    , Unfolding of a temperature-sensitive domain controls voltage-gated channel activation. Cell 164, 922–936 (2016).
    OpenUrlCrossRefPubMed
  25. ↵
    1. Y. Fujiwara,
    2. Y. Okamura
    , Temperature-sensitive gating of voltage-gated proton channels. Curr. Top. Membr. 74, 259–292 (2014).
    OpenUrlCrossRefPubMed
  26. ↵
    1. C. Arrigoni,
    2. D. L. Minor Jr.
    , Global versus local mechanisms of temperature sensing in ion channels. Pflugers Arch. 470, 733–744 (2018).
    OpenUrl
  27. ↵
    1. S. Brauchi,
    2. G. Orta,
    3. M. Salazar,
    4. E. Rosenmann,
    5. R. Latorre
    , A hot-sensing cold receptor: C-terminal domain determines thermosensation in transient receptor potential channels. J. Neurosci. 26, 4835–4840 (2006).
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. F. H. Crick
    , Is alpha-keratin a coiled coil? Nature 170, 882–883 (1952).
    OpenUrlPubMed
  29. ↵
    1. A. N. Lupas,
    2. M. Gruber
    , The structure of alpha-helical coiled coils. Adv. Protein Chem. 70, 37–78 (2005).
    OpenUrlCrossRefPubMed
  30. ↵
    1. E. O. Gracheva et al.
    , Ganglion-specific splicing of TRPV1 underlies infrared sensation in vampire bats. Nature 476, 88–91 (2011).
    OpenUrlCrossRefPubMed
  31. ↵
    1. Y. Fujiwara et al.
    , The cytoplasmic coiled-coil mediates cooperative gating temperature sensitivity in the voltage-gated H(+) channel Hv1. Nat. Commun. 3, 816 (2012).
    OpenUrlCrossRefPubMed
  32. ↵
    1. N. Raddatz,
    2. J. P. Castillo,
    3. C. Gonzalez,
    4. O. Alvarez,
    5. R. Latorre
    , Temperature and voltage coupling to channel opening in transient receptor potential melastatin 8 (TRPM8). J. Biol. Chem. 289, 35438–35454 (2014).
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. S. Brauchi,
    2. P. Orio,
    3. R. Latorre
    , Clues to understanding cold sensation: Thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proc. Natl. Acad. Sci. U.S.A. 101, 15494–15499 (2004).
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. P. L. Privalov
    , Stability of proteins: Small globular proteins. Adv. Protein Chem. 33, 167–241 (1979).
    OpenUrlCrossRefPubMed
  35. ↵
    1. J. R. Litowski,
    2. R. S. Hodges
    , Designing heterodimeric two-stranded alpha-helical coiled-coils. Effects of hydrophobicity and alpha-helical propensity on protein folding, stability, and specificity. J. Biol. Chem. 277, 37272–37279 (2002).
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. H. Chao et al.
    , Kinetic study on the formation of a de novo designed heterodimeric coiled-coil: Use of surface plasmon resonance to monitor the association and dissociation of polypeptide chains. Biochemistry 35, 12175–12185 (1996).
    OpenUrlCrossRefPubMed
  37. ↵
    1. G. De Crescenzo,
    2. J. R. Litowski,
    3. R. S. Hodges,
    4. M. D. O’Connor-McCourt
    , Real-time monitoring of the interactions of two-stranded de novo designed coiled-coils: Effect of chain length on the kinetic and thermodynamic constants of binding. Biochemistry 42, 1754–1763 (2003).
    OpenUrlCrossRefPubMed
  38. ↵
    1. A. K. Singh et al.
    , Structural basis of temperature sensation by the TRP channel TRPV3. Nat. Struct. Mol. Biol. 26, 994–998 (2019).
    OpenUrl
  39. ↵
    1. B. Nilius et al.
    , Gating of TRP channels: A voltage connection? J. Physiol. 567, 35–44 (2005).
    OpenUrlCrossRefPubMed
  40. ↵
    1. N. Ando et al.
    , Structural and thermodynamic characterization of T4 lysozyme mutants and the contribution of internal cavities to pressure denaturation. Biochemistry 47, 11097–11109 (2008).
    OpenUrlCrossRefPubMed
  41. ↵
    1. M. D. Collins,
    2. G. Hummer,
    3. M. L. Quillin,
    4. B. W. Matthews,
    5. S. M. Gruner
    , Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation. Proc. Natl. Acad. Sci. U.S.A. 102, 16668–16671 (2005).
    OpenUrlAbstract/FREE Full Text
  42. ↵
    1. K. J. Frye,
    2. C. A. Royer
    , Probing the contribution of internal cavities to the volume change of protein unfolding under pressure. Protein Sci. 7, 2217–2222 (1998).
    OpenUrlCrossRefPubMed
  43. ↵
    1. J. Zimmerberg,
    2. V. A. Parsegian
    , Polymer inaccessible volume changes during opening and closing of a voltage-dependent ionic channel. Nature 323, 36–39 (1986).
    OpenUrlCrossRefPubMed
  44. ↵
    1. J. Zimmerberg,
    2. F. Bezanilla,
    3. V. A. Parsegian
    , Solute inaccessible aqueous volume changes during opening of the potassium channel of the squid giant axon. Biophys. J. 57, 1049–1064 (1990).
    OpenUrlCrossRefPubMed
  45. ↵
    1. X. Jiang,
    2. G. C. Bett,
    3. X. Li,
    4. V. E. Bondarenko,
    5. R. L. Rasmusson
    , C-type inactivation involves a significant decrease in the intracellular aqueous pore volume of Kv1.4 K+ channels expressed in Xenopus oocytes. J. Physiol. 549, 683–695 (2003).
    OpenUrlCrossRefPubMed
  46. ↵
    1. I. Díaz-Franulic,
    2. V. González-Pérez,
    3. H. Moldenhauer,
    4. N. Navarro-Quezada,
    5. D. Naranjo
    , Gating-induced large aqueous volumetric remodeling and aspartate tolerance in the voltage sensor domain of Shaker K+ channels. Proc. Natl. Acad. Sci. U.S.A. 115, 8203–8208 (2018).
    OpenUrlAbstract/FREE Full Text
  47. ↵
    1. F. Kukita
    , Solvent effects on squid sodium channels are attributable to movements of a flexible protein structure in gating currents and to hydration in a pore. J. Physiol. 522, 357–373 (2000).
    OpenUrlCrossRefPubMed
  48. ↵
    1. J. Zimmerberg,
    2. V. A. Parsegian
    , Water movement during channel opening and closing. J. Bioenerg. Biomembr. 19, 351–358 (1987).
    OpenUrlCrossRefPubMed
  49. ↵
    1. J. A. Matta,
    2. G. P. Ahern
    , Voltage is a partial activator of rat thermosensitive TRP channels. J. Physiol. 585, 469–482 (2007).
    OpenUrlCrossRefPubMed
  50. ↵
    1. L. Gregorio-Teruel,
    2. P. Valente,
    3. J. M. González-Ros,
    4. G. Fernández-Ballester,
    5. A. Ferrer-Montiel
    , Mutation of I696 and W697 in the TRP box of vanilloid receptor subtype I modulates allosteric channel activation. J. Gen. Physiol. 143, 361–375 (2014).
    OpenUrlAbstract/FREE Full Text
  51. ↵
    1. F. Qin
    , Demystifying thermal channels: Driving a channel both forwards and backwards with a single gear? Biophys. J. 104, 2118–2120 (2013).
    OpenUrlCrossRefPubMed
  52. ↵
    1. L. Wang et al.
    , Structures and gating mechanism of human TRPM2. Science 362, eaav4809 (2018).
    OpenUrlAbstract/FREE Full Text
  53. ↵
    1. L. L. McGoldrick et al.
    , Structure of the thermo-sensitive TRP channel TRP1 from the alga Chlamydomonas reinhardtii. Nat. Commun. 10, 4180 (2019).
    OpenUrlCrossRef
  54. ↵
    1. A. Pastore et al.
    , Unbiased cold denaturation: Low- and high-temperature unfolding of yeast frataxin under physiological conditions. J. Am. Chem. Soc. 129, 5374–5375 (2007).
    OpenUrlCrossRefPubMed
  55. ↵
    1. J. R. Bothe et al.
    , The complex energy landscape of the protein IscU. Biophys. J. 109, 1019–1025 (2015).
    OpenUrl
  56. ↵
    1. P. L. Privalov
    , Cold denaturation of proteins. Crit. Rev. Biochem. Mol. Biol. 25, 281–305 (1990).
    OpenUrlCrossRefPubMed
  57. ↵
    1. A. M. Correa,
    2. F. Bezanilla,
    3. R. Latorre
    , Gating kinetics of batrachotoxin-modified Na+ channels in the squid giant axon. Voltage and temperature effects. Biophys. J. 61, 1332–1352 (1992).
    OpenUrlCrossRefPubMed
  58. ↵
    1. A. Jara-Oseguera,
    2. L. D. Islas
    , The role of allosteric coupling on thermal activation of thermo-TRP channels. Biophys. J. 104, 2160–2169 (2013).
    OpenUrlCrossRefPubMed
  59. ↵
    1. R. Männikkö,
    2. F. Elinder,
    3. H. P. Larsson
    , Voltage-sensing mechanism is conserved among ion channels gated by opposite voltages. Nature 419, 837–841 (2002).
    OpenUrlCrossRefPubMed
  60. ↵
    1. R. Latorre et al.
    , Molecular coupling between voltage sensor and pore opening in the Arabidopsis inward rectifier K+ channel KAT1. J. Gen. Physiol. 122, 459–469 (2003).
    OpenUrlAbstract/FREE Full Text
  61. ↵
    1. A. J. Labro,
    2. D. M. Cortes,
    3. C. Tilegenova,
    4. L. G. Cuello
    , Inverted allosteric coupling between activation and inactivation gates in K+ channels. Proc. Natl. Acad. Sci. U.S.A. 115, 5426–5431 (2018).
    OpenUrlAbstract/FREE Full Text
  62. ↵
    1. J. F. Cordero-Morales,
    2. E. O. Gracheva,
    3. D. Julius
    , Cytoplasmic ankyrin repeats of transient receptor potential A1 (TRPA1) dictate sensitivity to thermal and chemical stimuli. Proc. Natl. Acad. Sci. U.S.A. 108, E1184–E1191 (2011).
    OpenUrlAbstract/FREE Full Text
  63. ↵
    1. S. Jabba et al.
    , Directionality of temperature activation in mouse TRPA1 ion channel can be inverted by single-point mutations in ankyrin repeat six. Neuron 82, 1017–1031 (2014).
    OpenUrlCrossRefPubMed
  64. ↵
    1. G. I. Makhatadze,
    2. P. L. Privalov
    , Heat capacity of proteins. I. Partial molar heat capacity of individual amino acid residues in aqueous solution: Hydration effect. J. Mol. Biol. 213, 375–384 (1990).
    OpenUrlCrossRefPubMed
  65. ↵
    1. Y. Huang,
    2. R. Fliegert,
    3. A. H. Guse,
    4. W. Lü,
    5. J. Du
    , A structural overview of the ion channels of the TRPM family. Cell Calcium 85, 102111 (2020).
    OpenUrl
  66. ↵
    1. W. Humphrey,
    2. A. Dalke,
    3. K. Schulten
    , VMD: Visual molecular dynamics. J. Mol. Graph 14, 33–38, 27–38 (1996).

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

Subscribers, for more details, please visit our Subscriptions FAQ.

Please click here to log into the PNAS submission website.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A folding reaction at the C-terminal domain drives temperature sensing in TRPM8 channels
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
A folding reaction at the C-terminal domain drives temperature sensing in TRPM8 channels
Ignacio Díaz-Franulic, Natalia Raddatz, Karen Castillo, Fernando D. González-Nilo, Ramon Latorre
Proceedings of the National Academy of Sciences Aug 2020, 117 (33) 20298-20304; DOI: 10.1073/pnas.2004303117

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
A folding reaction at the C-terminal domain drives temperature sensing in TRPM8 channels
Ignacio Díaz-Franulic, Natalia Raddatz, Karen Castillo, Fernando D. González-Nilo, Ramon Latorre
Proceedings of the National Academy of Sciences Aug 2020, 117 (33) 20298-20304; DOI: 10.1073/pnas.2004303117
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 117 (33)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Biological Sciences
  • Physiology

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Materials and Methods
    • Data Availability.
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Abstract depiction of a guitar and musical note
Science & Culture: At the nexus of music and medicine, some see disease treatments
Although the evidence is still limited, a growing body of research suggests music may have beneficial effects for diseases such as Parkinson’s.
Image credit: Shutterstock/agsandrew.
Large piece of gold
News Feature: Tracing gold's cosmic origins
Astronomers thought they’d finally figured out where gold and other heavy elements in the universe came from. In light of recent results, they’re not so sure.
Image credit: Science Source/Tom McHugh.
Dancers in red dresses
Journal Club: Friends appear to share patterns of brain activity
Researchers are still trying to understand what causes this strong correlation between neural and social networks.
Image credit: Shutterstock/Yeongsik Im.
Yellow emoticons
Learning the language of facial expressions
Aleix Martinez explains why facial expressions often are not accurate indicators of emotion.
Listen
Past PodcastsSubscribe
Goats standing in a pin
Transplantation of sperm-producing stem cells
CRISPR-Cas9 gene editing can improve the effectiveness of spermatogonial stem cell transplantation in mice and livestock, a study finds.
Image credit: Jon M. Oatley.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490