Nucleosome allostery in pioneer transcription factor binding
See allHide authors and affiliations
Edited by Karolin Luger, University of Colorado Boulder, Boulder, CO, and approved July 14, 2020 (received for review March 24, 2020)

Significance
Upon binding of effectors, allosteric molecules change their structures and responses to the downstream molecules, which can be viewed as the molecular if−then device. Simulating binding of two pioneer transcription factors (TFs), Sox2 and Oct4, to a nucleosome, which is the fundamental unit of genome folding, we found that a nucleosome acts as a new type of allosteric molecule. Free nucleosomes exhibited rotation-coupled sliding of their DNA among metastable positions. The Sox2 binding on them selected a specific rotational phase of its motif, inducing global sliding of nucleosomal DNA. Consequently, the repositioned DNA affected the accessibility of another TF, Oct4, or the second molecule of Sox2 at a distant region within the nucleosome, which thus is a long-distance allosteric effect.
Abstract
While recent experiments revealed that some pioneer transcription factors (TFs) can bind to their target DNA sequences inside a nucleosome, the binding dynamics of their target recognitions are poorly understood. Here we used the latest coarse-grained models and molecular dynamics simulations to study the nucleosome-binding procedure of the two pioneer TFs, Sox2 and Oct4. In the simulations for a strongly positioning nucleosome, Sox2 selected its target DNA sequence only when the target was exposed. Otherwise, Sox2 entropically bound to the dyad region nonspecifically. In contrast, Oct4 plastically bound on the nucleosome mainly in two ways. First, the two POU domains of Oct4 separately bound to the two parallel gyres of the nucleosomal DNA, supporting the previous experimental results of the partial motif recognition. Second, the POUS domain of Oct4 favored binding on the acidic patch of histones. Then, simulating the TFs binding to a genomic nucleosome, the LIN28B nucleosome, we found that the recognition of a pseudo motif by Sox2 induced the local DNA bending and shifted the population of the rotational position of the nucleosomal DNA. The redistributed DNA phase, in turn, changed the accessibility of a distant TF binding site, which consequently affected the binding probability of a second Sox2 or Oct4. These results revealed a nucleosomal DNA-mediated allosteric mechanism, through which one TF binding event can change the global conformation, and effectively regulate the binding of another TF at distant sites. Our simulations provide insights into the binding mechanism of single and multiple TFs on the nucleosome.
Footnotes
- ↵1To whom correspondence may be addressed. Email: takada{at}biophys.kyoto-u.ac.jp.
Author contributions: C.T. and S.T. designed research; C.T. performed research; C.T. and S.T. analyzed data; and C.T. and S.T. wrote the paper.
The authors declare no competing interest.
This article is a PNAS Direct Submission.
This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005500117/-/DCSupplemental.
Data Availability.
The Software CafeMol can be downloaded from www.cafemol.org/. Data included in the main text and SI Appendix are sufficient to reproduce the work. All of the large-volume simulation trajectories are stored on local servers and can be obtained upon reasonable request.
Published under the PNAS license.
Citation Manager Formats
Article Classifications
- Biological Sciences
- Biophysics and Computational Biology