Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

An ATP-dependent partner switch links flagellar C-ring assembly with gene expression

View ORCID ProfileVitan Blagotinsek, View ORCID ProfileMeike Schwan, Wieland Steinchen, Devid Mrusek, View ORCID ProfileJohn C. Hook, Florian Rossmann, View ORCID ProfileSven A. Freibert, View ORCID ProfileHanna Kratzat, Guillaume Murat, Dieter Kressler, Roland Beckmann, View ORCID ProfileMorgan Beeby, Kai M. Thormann, and View ORCID ProfileGert Bange
PNAS August 25, 2020 117 (34) 20826-20835; first published August 11, 2020; https://doi.org/10.1073/pnas.2006470117
Vitan Blagotinsek
aCenter for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, 35043 Marburg, Germany;
bDepartment of Chemistry, Philipps-University Marburg, 35043 Marburg, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Vitan Blagotinsek
Meike Schwan
cDepartment of Microbiology and Molecular Biology, Justus-Liebig-Universität, 35392 Giessen, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Meike Schwan
Wieland Steinchen
aCenter for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, 35043 Marburg, Germany;
bDepartment of Chemistry, Philipps-University Marburg, 35043 Marburg, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Devid Mrusek
aCenter for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, 35043 Marburg, Germany;
bDepartment of Chemistry, Philipps-University Marburg, 35043 Marburg, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John C. Hook
cDepartment of Microbiology and Molecular Biology, Justus-Liebig-Universität, 35392 Giessen, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for John C. Hook
Florian Rossmann
cDepartment of Microbiology and Molecular Biology, Justus-Liebig-Universität, 35392 Giessen, Germany;
dDepartment of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sven A. Freibert
eInstitut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, 35032 Marburg, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sven A. Freibert
Hanna Kratzat
fGenzentrum, Ludwig-Maximilians-Universität, 81377 Munich, Germany;
gDepartment of Biochemistry, Ludwig-Maximilians-Universität, 81377 Munich, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hanna Kratzat
Guillaume Murat
hDepartment of Biology, University of Fribourg, 1700 Fribourg, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dieter Kressler
hDepartment of Biology, University of Fribourg, 1700 Fribourg, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roland Beckmann
fGenzentrum, Ludwig-Maximilians-Universität, 81377 Munich, Germany;
gDepartment of Biochemistry, Ludwig-Maximilians-Universität, 81377 Munich, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Morgan Beeby
dDepartment of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Morgan Beeby
Kai M. Thormann
cDepartment of Microbiology and Molecular Biology, Justus-Liebig-Universität, 35392 Giessen, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: Kai.Thormann@mikro.bio.uni-giessen.de gert.bange@synmikro.uni-marburg.de
Gert Bange
aCenter for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, 35043 Marburg, Germany;
bDepartment of Chemistry, Philipps-University Marburg, 35043 Marburg, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Gert Bange
  • For correspondence: Kai.Thormann@mikro.bio.uni-giessen.de gert.bange@synmikro.uni-marburg.de
  1. Edited by Caroline S. Harwood, University of Washington, Seattle, WA, and approved July 9, 2020 (received for review April 6, 2020)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

Flagella, bacterial organelles of locomotion, appear in a defined number and localization at the bacterial cell surface. The MinD-type ATPase FlhG numerically regulates flagellation patterns through a molecular mechanism only poorly understood. Depending on its ATP-dependent oligomerization state, FlhG interacts either with the C-ring protein FliM during flagellar assembly or with flagellar master regulator FlrA. This partner switch between FliM and FlrA establishes a regulatory network critical for the numerical regulation of flagella, in which the physical assembly of the flagellum transcriptionally feeds back to prevent the production of more building blocks.

Abstract

Bacterial flagella differ in their number and spatial arrangement. In many species, the MinD-type ATPase FlhG (also YlxH/FleN) is central to the numerical control of bacterial flagella, and its deletion in polarly flagellated bacteria typically leads to hyperflagellation. The molecular mechanism underlying this numerical control, however, remains enigmatic. Using the model species Shewanella putrefaciens, we show that FlhG links assembly of the flagellar C ring with the action of the master transcriptional regulator FlrA (named FleQ in other species). While FlrA and the flagellar C-ring protein FliM have an overlapping binding site on FlhG, their binding depends on the ATP-dependent dimerization state of FlhG. FliM interacts with FlhG independent of nucleotide binding, while FlrA exclusively interacts with the ATP-dependent FlhG dimer and stimulates FlhG ATPase activity. Our in vivo analysis of FlhG partner switching between FliM and FlrA reveals its mechanism in the numerical restriction of flagella, in which the transcriptional activity of FlrA is down-regulated through a negative feedback loop. Our study demonstrates another level of regulatory complexity underlying the spationumerical regulation of flagellar biogenesis and implies that flagellar assembly transcriptionally regulates the production of more initial building blocks.

  • flagellum
  • ATPase
  • regulation
  • nanomachine
  • spatiotemporal

Footnotes

  • ↵1V.B. and M.S. contributed equally to this work.

  • ↵2To whom correspondence may be addressed. Email: Kai.Thormann{at}mikro.bio.uni-giessen.de or gert.bange{at}synmikro.uni-marburg.de.
  • Author contributions: D.K., K.M.T., and G.B. designed research; V.B., M.S., W.S., D.M., J.C.H., F.R., S.A.F., H.K., and G.M. performed research; R.B. contributed new reagents/analytic tools; V.B., M.S., W.S., D.M., F.R., S.A.F., M.B., K.M.T., and G.B. analyzed data; and M.B., K.M.T., and G.B. wrote the paper.

  • The authors declare no competing interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2006470117/-/DCSupplemental.

Data Availability.

All data supporting the findings of this study are included in this paper and SI Appendix.

Published under the PNAS license.

View Full Text

References

  1. ↵
    1. F. Altegoer,
    2. G. Bange
    , Undiscovered regions on the molecular landscape of flagellar assembly. Curr. Opin. Microbiol. 28, 98–105 (2015).
    OpenUrlCrossRefPubMed
  2. ↵
    1. F. F. Chevance,
    2. K. T. Hughes
    , Coordinating assembly of a bacterial macromolecular machine. Nat. Rev. Microbiol. 6, 455–465 (2008).
    OpenUrlCrossRefPubMed
  3. ↵
    1. J. S. Schuhmacher,
    2. K. M. Thormann,
    3. G. Bange
    , How bacteria maintain location and number of flagella? FEMS Microbiol. Rev. 39, 812–822 (2015).
    OpenUrlCrossRefPubMed
  4. ↵
    1. B. I. Kazmierczak,
    2. D. R. Hendrixson
    , Spatial and numerical regulation of flagellar biosynthesis in polarly flagellated bacteria. Mol. Microbiol. 88, 655–663 (2013).
    OpenUrlCrossRefPubMed
  5. ↵
    1. N. Dasgupta,
    2. S. K. Arora,
    3. R. Ramphal
    , fleN, a gene that regulates flagellar number in Pseudomonas aeruginosa. J. Bacteriol. 182, 357–364 (2000).
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. N. E. Correa,
    2. F. Peng,
    3. K. E. Klose
    , Roles of the regulatory proteins FlhF and FlhG in the Vibrio cholerae flagellar transcription hierarchy. J. Bacteriol. 187, 6324–6332 (2005).
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. A. Kusumoto et al.
    , Regulation of polar flagellar number by the flhF and flhG genes in Vibrio alginolyticus. J. Biochem. 139, 113–121 (2006).
    OpenUrlCrossRefPubMed
  8. ↵
    1. J. S. Schuhmacher et al.
    , MinD-like ATPase FlhG effects location and number of bacterial flagella during C-ring assembly. Proc. Natl. Acad. Sci. U.S.A. 112, 3092–3097 (2015).
    OpenUrlAbstract/FREE Full Text
  9. ↵
    1. C. J. Gulbronson et al.
    , FlhG employs diverse intrinsic domains and influences FlhF GTPase activity to numerically regulate polar flagellar biogenesis in Campylobacter jejuni. Mol. Microbiol. 99, 291–306 (2016).
    OpenUrlCrossRefPubMed
  10. ↵
    1. B. P. Chanchal,
    2. P. Banerjee,
    3. D. Jain
    , ATP-induced structural remodeling in the antiactivator FleN enables formation of the functional dimeric form. Structure 25, 243–252 (2017).
    OpenUrlCrossRef
  11. ↵
    1. M. Balaban,
    2. D. R. Hendrixson
    , Polar flagellar biosynthesis and a regulator of flagellar number influence spatial parameters of cell division in Campylobacter jejuni. PLoS Pathog. 7, e1002420 (2011).
    OpenUrlCrossRefPubMed
  12. ↵
    1. T. H. Szeto,
    2. S. L. Rowland,
    3. C. L. Habrukowich,
    4. G. F. King
    , The MinD membrane targeting sequence is a transplantable lipid-binding helix. J. Biol. Chem. 278, 40050–40056 (2003).
    OpenUrlAbstract/FREE Full Text
  13. ↵
    1. H. Zhou,
    2. J. Lutkenhaus
    , Membrane binding by MinD involves insertion of hydrophobic residues within the C-terminal amphipathic helix into the bilayer. J. Bacteriol. 185, 4326–4335 (2003).
    OpenUrlAbstract/FREE Full Text
  14. ↵
    1. G. Bange et al.
    , Structural basis for the molecular evolution of SRP-GTPase activation by protein. Nat. Struct. Mol. Biol. 18, 1376–1380 (2011).
    OpenUrlCrossRefPubMed
  15. ↵
    1. A. Kusumoto et al.
    , Collaboration of FlhF and FlhG to regulate polar-flagella number and localization in Vibrio alginolyticus. Microbiology 154, 1390–1399 (2008).
    OpenUrlCrossRefPubMed
  16. ↵
    1. F. Rossmann et al.
    , The role of FlhF and HubP as polar landmark proteins in Shewanella putrefaciens CN-32. Mol. Microbiol. 98, 727–742 (2015).
    OpenUrlCrossRefPubMed
  17. ↵
    1. N. Dasgupta,
    2. R. Ramphal
    , Interaction of the antiactivator FleN with the transcriptional activator FleQ regulates flagellar number in Pseudomonas aeruginosa. J. Bacteriol. 183, 6636–6644 (2001).
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. C. Baraquet,
    2. C. S. Harwood
    , Cyclic diguanosine monophosphate represses bacterial flagella synthesis by interacting with the Walker A motif of the enhancer-binding protein FleQ. Proc. Natl. Acad. Sci. U.S.A. 110, 18478–18483 (2013).
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. S. Bubendorfer et al.
    , Specificity of motor components in the dual flagellar system of Shewanella putrefaciens CN-32. Mol. Microbiol. 83, 335–350 (2012).
    OpenUrlCrossRefPubMed
  20. ↵
    1. A. Paulick et al.
    , Dual stator dynamics in the Shewanella oneidensis MR-1 flagellar motor. Mol. Microbiol. 96, 993–1001 (2015).
    OpenUrlCrossRefPubMed
  21. ↵
    1. M. Kaplan et al.
    , In situ imaging of the bacterial flagellar motor disassembly and assembly processes. EMBO J. 38, e100957 (2019).
    OpenUrl
  22. ↵
    1. J. L. Ferreira et al.
    , γ-proteobacteria eject their polar flagella under nutrient depletion, retaining flagellar motor relic structures. PLoS Biol. 17, e3000165 (2019).
    OpenUrlCrossRef
  23. ↵
    1. B. Y. Matsuyama et al.
    , Mechanistic insights into c-di-GMP-dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A. 113, E209–E218 (2016).
    OpenUrlAbstract/FREE Full Text
  24. ↵
    1. S. K. Arora,
    2. B. W. Ritchings,
    3. E. C. Almira,
    4. S. Lory,
    5. R. Ramphal
    , A transcriptional activator, FleQ, regulates mucin adhesion and flagellar gene expression in Pseudomonas aeruginosa in a cascade manner. J. Bacteriol. 179, 5574–5581 (1997).
    OpenUrlAbstract/FREE Full Text
  25. ↵
    1. C. Baraquet,
    2. K. Murakami,
    3. M. R. Parsek,
    4. C. S. Harwood
    , The FleQ protein from Pseudomonas aeruginosa functions as both a repressor and an activator to control gene expression from the pel operon promoter in response to c-di-GMP. Nucleic Acids Res. 40, 7207–7218 (2012).
    OpenUrlCrossRefPubMed
  26. ↵
    1. D. Houde,
    2. S. A. Berkowitz,
    3. J. R. Engen
    , The utility of hydrogen/deuterium exchange mass spectrometry in biopharmaceutical comparability studies. J. Pharm. Sci. 100, 2071–2086 (2011).
    OpenUrlCrossRefPubMed
  27. ↵
    1. M. J. Kühn,
    2. F. K. Schmidt,
    3. B. Eckhardt,
    4. K. M. Thormann
    , Bacteria exploit a polymorphic instability of the flagellar filament to escape from traps. Proc. Natl. Acad. Sci. U.S.A. 114, 6340–6345 (2017).
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. L. Wu,
    2. J. Wang,
    3. P. Tang,
    4. H. Chen,
    5. H. Gao
    , Genetic and molecular characterization of flagellar assembly in Shewanella oneidensis. PLoS One 6, e21479 (2011).
    OpenUrlCrossRefPubMed
  29. ↵
    1. M. Shi,
    2. T. Gao,
    3. L. Ju,
    4. Y. Yao,
    5. H. Gao
    , Effects of FlrBC on flagellar biosynthesis of Shewanella oneidensis. Mol. Microbiol. 93, 1269–1283 (2014).
    OpenUrlCrossRefPubMed
  30. ↵
    1. K. T. Hughes,
    2. K. L. Gillen,
    3. M. J. Semon,
    4. J. E. Karlinsey
    , Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 262, 1277–1280 (1993).
    OpenUrlAbstract/FREE Full Text
  31. ↵
    1. M. Erhardt,
    2. H. M. Singer,
    3. D. H. Wee,
    4. J. P. Keener,
    5. K. T. Hughes
    , An infrequent molecular ruler controls flagellar hook length in Salmonella enterica. EMBO J. 30, 2948–2961 (2011).
    OpenUrlAbstract/FREE Full Text
  32. ↵
    1. T. E. Wales,
    2. K. E. Fadgen,
    3. G. C. Gerhardt,
    4. J. R. Engen
    , High-speed and high-resolution UPLC separation at zero degrees Celsius. Anal. Chem. 80, 6815–6820 (2008).
    OpenUrlCrossRefPubMed
  33. ↵
    1. S. J. Geromanos et al
    ., The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS. Proteomics 9, 1683–1695 (2009).
    OpenUrlCrossRefPubMed
  34. ↵
    1. G. Z. Li et al
    ., Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics 9, 1696–1719 (2009).
    OpenUrlCrossRefPubMed
  35. ↵
    1. M. Osorio-Valeriano et al.
    , ParB-type DNA segregation proteins are CTP-dependent molecular switches. Cell 179, 1512–1524.e15 (2019).
    OpenUrlCrossRef
  36. ↵
    1. P. James,
    2. J. Halladay,
    3. E. A. Craig
    , Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425–1436 (1996).
    OpenUrlAbstract/FREE Full Text
  37. ↵
    1. M .W. Pfaffl
    , A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).
    OpenUrlCrossRefPubMed
  38. ↵
    1. M. E. Heimbrook,
    2. W. L. Wang,
    3. G. Campbell
    , Staining bacterial flagella easily. J. Clin. Microbiol. 27, 2612–2615 (1989).
    OpenUrlAbstract/FREE Full Text
  39. ↵
    1. M. Jerabek-Willemsen,
    2. C. J. Wienken,
    3. D. Braun,
    4. P. Baaske,
    5. S. Duhr
    , Molecular interaction studies using microscale thermophoresis. Assay Drug Dev. Technol. 9, 342–353 (2011).
    OpenUrlCrossRefPubMed
  40. ↵
    1. M. Bertoni,
    2. F. Kiefer,
    3. M. Biasini,
    4. L. Bordoli,
    5. T. Schwede
    , Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Sci. Rep. 7, 10480 (2017).
    OpenUrlCrossRefPubMed
  41. ↵
    1. C. Suloway et al
    ., Fully automated, sequential tilt-series acquisition with Leginon. J. Struct. Biol. 167, 11–18 (2009).
    OpenUrlCrossRefPubMed
  42. ↵
    1. F. Amat et al.
    , Markov random field based automatic image alignment for electron tomography. J. Struct. Biol. 161, 260–275 (2008).
    OpenUrlCrossRefPubMed
  43. ↵
    1. J. R. Kremer,
    2. D. N. Mastronarde,
    3. J. R. McIntosh
    , Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).
    OpenUrlCrossRefPubMed
  44. ↵
    1. D. Nicastro et al.
    , The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313, 944–948 (2006).
    OpenUrlAbstract/FREE Full Text

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

Subscribers, for more details, please visit our Subscriptions FAQ.

Please click here to log into the PNAS submission website.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
An ATP-dependent partner switch links flagellar C-ring assembly with gene expression
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
An ATP-dependent partner switch links flagellar C-ring assembly with gene expression
Vitan Blagotinsek, Meike Schwan, Wieland Steinchen, Devid Mrusek, John C. Hook, Florian Rossmann, Sven A. Freibert, Hanna Kratzat, Guillaume Murat, Dieter Kressler, Roland Beckmann, Morgan Beeby, Kai M. Thormann, Gert Bange
Proceedings of the National Academy of Sciences Aug 2020, 117 (34) 20826-20835; DOI: 10.1073/pnas.2006470117

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
An ATP-dependent partner switch links flagellar C-ring assembly with gene expression
Vitan Blagotinsek, Meike Schwan, Wieland Steinchen, Devid Mrusek, John C. Hook, Florian Rossmann, Sven A. Freibert, Hanna Kratzat, Guillaume Murat, Dieter Kressler, Roland Beckmann, Morgan Beeby, Kai M. Thormann, Gert Bange
Proceedings of the National Academy of Sciences Aug 2020, 117 (34) 20826-20835; DOI: 10.1073/pnas.2006470117
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 117 (34)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Biological Sciences
  • Microbiology

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Materials and Methods
    • Data Availability.
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Abstract depiction of a guitar and musical note
Science & Culture: At the nexus of music and medicine, some see disease treatments
Although the evidence is still limited, a growing body of research suggests music may have beneficial effects for diseases such as Parkinson’s.
Image credit: Shutterstock/agsandrew.
Large piece of gold
News Feature: Tracing gold's cosmic origins
Astronomers thought they’d finally figured out where gold and other heavy elements in the universe came from. In light of recent results, they’re not so sure.
Image credit: Science Source/Tom McHugh.
Dancers in red dresses
Journal Club: Friends appear to share patterns of brain activity
Researchers are still trying to understand what causes this strong correlation between neural and social networks.
Image credit: Shutterstock/Yeongsik Im.
Yellow emoticons
Learning the language of facial expressions
Aleix Martinez explains why facial expressions often are not accurate indicators of emotion.
Listen
Past PodcastsSubscribe
Goats standing in a pin
Transplantation of sperm-producing stem cells
CRISPR-Cas9 gene editing can improve the effectiveness of spermatogonial stem cell transplantation in mice and livestock, a study finds.
Image credit: Jon M. Oatley.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490