Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Direct functionalization of C−H bonds by electrophilic anions

View ORCID ProfileJonas Warneke, View ORCID ProfileMartin Mayer, View ORCID ProfileMarkus Rohdenburg, View ORCID ProfileXin Ma, Judy K. Y. Liu, View ORCID ProfileMax Grellmann, View ORCID ProfileSreekanta Debnath, View ORCID ProfileVladimir A. Azov, View ORCID ProfileEdoardo Apra, View ORCID ProfileRobert P. Young, View ORCID ProfileCarsten Jenne, View ORCID ProfileGrant E. Johnson, View ORCID ProfileHilkka I. Kenttämaa, View ORCID ProfileKnut R. Asmis, and View ORCID ProfileJulia Laskin
PNAS September 22, 2020 117 (38) 23374-23379; first published September 2, 2020; https://doi.org/10.1073/pnas.2004432117
Jonas Warneke
aWilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, 04103 Leipzig, Germany;
bDepartment of Chemistry, Purdue University, West Lafayette, IN 47907;
cPhysical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jonas Warneke
  • For correspondence: jonas.warneke@uni-leipzig.de knut.asmis@uni-leipzig.de jlaskin@purdue.edu
Martin Mayer
aWilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, 04103 Leipzig, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Martin Mayer
Markus Rohdenburg
dInstitut für Angewandte und Physikalische Chemie, Fachbereich 2-Biologie/Chemie, Universität Bremen, 28359 Bremen, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Markus Rohdenburg
Xin Ma
bDepartment of Chemistry, Purdue University, West Lafayette, IN 47907;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Xin Ma
Judy K. Y. Liu
bDepartment of Chemistry, Purdue University, West Lafayette, IN 47907;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Max Grellmann
aWilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, 04103 Leipzig, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Max Grellmann
Sreekanta Debnath
eFritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sreekanta Debnath
Vladimir A. Azov
fDepartment of Chemistry, University of the Free State, 9300 Bloemfontein, South Africa;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Vladimir A. Azov
Edoardo Apra
gEnvironmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Edoardo Apra
Robert P. Young
gEnvironmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Robert P. Young
Carsten Jenne
hAnorganische Chemie, Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, 42119 Wuppertal, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Carsten Jenne
Grant E. Johnson
cPhysical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Grant E. Johnson
Hilkka I. Kenttämaa
bDepartment of Chemistry, Purdue University, West Lafayette, IN 47907;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hilkka I. Kenttämaa
Knut R. Asmis
aWilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, 04103 Leipzig, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Knut R. Asmis
  • For correspondence: jonas.warneke@uni-leipzig.de knut.asmis@uni-leipzig.de jlaskin@purdue.edu
Julia Laskin
bDepartment of Chemistry, Purdue University, West Lafayette, IN 47907;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Julia Laskin
  • For correspondence: jonas.warneke@uni-leipzig.de knut.asmis@uni-leipzig.de jlaskin@purdue.edu
  1. Edited by Robert H. Crabtree, Yale University, New Haven, CT, and approved August 3, 2020 (received for review March 9, 2020)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

Functionalization of unreactive molecules is a significant chemical challenge relevant to the conversion of abundant feedstocks such as alkanes into high-value chemicals. Herein, we demonstrate a new mechanism of alkane functionalization by the substitution of a proton by an anion in an alkyl chain. The reactive anion used for this reaction is generated from a highly stable precursor. The reaction mechanism is established using experimental and computational approaches, and the products are collected in the condensed phase using high-flux mass-selected ion deposition. This paves the way for exploiting the properties of gaseous ions for the generation of complex molecular structures in the condensed phase.

Abstract

Alkanes and [B12X12]2− (X = Cl, Br) are both stable compounds which are difficult to functionalize. Here we demonstrate the formation of a boron−carbon bond between these substances in a two-step process. Fragmentation of [B12X12]2− in the gas phase generates highly reactive [B12X11]− ions which spontaneously react with alkanes. The reaction mechanism was investigated using tandem mass spectrometry and gas-phase vibrational spectroscopy combined with electronic structure calculations. [B12X11]− reacts by an electrophilic substitution of a proton in an alkane resulting in a B−C bond formation. The product is a dianionic [B12X11CnH2n+1]2− species, to which H+ is electrostatically bound. High-flux ion soft landing was performed to codeposit [B12X11]− and complex organic molecules (phthalates) in thin layers on surfaces. Molecular structure analysis of the product films revealed that C−H functionalization by [B12X11]− occurred in the presence of other more reactive functional groups. This observation demonstrates the utility of highly reactive fragment ions for selective bond formation processes and may pave the way for the use of gas-phase ion chemistry for the generation of complex molecular structures in the condensed phase.

  • electrophilic anions
  • fragment ion deposition
  • dodecaborates
  • alkane functionalization
  • spectroscopy of reactive intermediates

Footnotes

  • ↵1To whom correspondence may be addressed. Email: jonas.warneke{at}uni-leipzig.de, knut.asmis{at}uni-leipzig.de, or jlaskin{at}purdue.edu.
  • ↵2M.M., M.R., and X.M. contributed equally to this work.

  • Author contributions: J.W., G.E.J., H.I.K., K.R.A., and J.L. designed research; J.W., M.M., M.R., X.M., J.K.Y.L., M.G., S.D., E.A., and R.P.Y. performed research; C.J. contributed new reagents/analytic tools; J.W., M.M., M.R., X.M., V.A.A., E.A., R.P.Y., C.J., G.E.J., H.I.K., K.R.A., and J.L. analyzed data; J.W. wrote the paper; and V.A.A. performed important literature research.

  • The authors declare no competing interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2004432117/-/DCSupplemental.

Data Availability.

All study data are included in the article and SI Appendix.

Published under the PNAS license.

View Full Text

References

  1. ↵
    1. S. Murai et al.
    , Activation of Unreactive Bonds and Organic Synthesis, (Springer, 1999).
  2. ↵
    1. B. G. Hashiguchi,
    2. S. M. Bischof,
    3. M. M. Konnick,
    4. R. A. Periana
    , Designing catalysts for functionalization of unactivated C-H bonds based on the CH activation reaction. Acc. Chem. Res. 45, 885–898 (2012).
    OpenUrlCrossRefPubMed
  3. ↵
    1. H. Schwarz,
    2. S. Shaik,
    3. J. Li
    , Electronic effects on room-temperature, gas-phase C-H bond activations by cluster oxides and metal carbides: The methane challenge. J. Am. Chem. Soc. 139, 17201–17212 (2017).
    OpenUrl
  4. ↵
    1. A. E. Shilov,
    2. G. B. Shul’pin
    , Activation of C−H bonds by metal complexes. Chem. Rev. 97, 2879–2932 (1997).
    OpenUrlCrossRefPubMed
  5. ↵
    1. H. Schwarz
    , How and why do cluster size, charge state, and ligands affect the course of metal-mediated gas-phase activation of methane? Isr. J. Chem. 54, 1413–1431 (2014).
    OpenUrl
  6. ↵
    1. C. Geng,
    2. J. Li,
    3. T. Weiske,
    4. H. Schwarz
    , Complete cleavage of the N≡N triple bond by Ta2N+ via degenerate ligand exchange at ambient temperature: A perfect catalytic cycle. Proc. Natl. Acad. Sci. U.S.A. 116, 21416–21420 (2019).
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. J. H. Waite Jr. et al.
    , The process of tholin formation in Titan’s upper atmosphere. Science 316, 870–875 (2007).
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. A. Li,
    2. F. P. M. Jjunju,
    3. R. G. Cooks
    , Nucleophilic addition of nitrogen to aryl cations: Mimicking Titan chemistry. J. Am. Soc. Mass Spectrom. 24, 1745–1754 (2013).
    OpenUrl
  9. ↵
    1. J. Reedijk,
    2. K. Poeppelmeier
    1. C. Knapp,
    “Weakly coordinating anions: Halogenated borates and dodecaborates” in Comprehensive Inorganic Chemistry II, J. Reedijk, K. Poeppelmeier, Eds. (Elsevier, Amsterdam, The Netherlands, 2013), Vol. 1, pp. 651–679.
    OpenUrl
  10. ↵
    1. A. Avelar,
    2. F. S. Tham,
    3. C. A. Reed
    , Superacidity of boron acids H2(B12X12) (X = Cl, Br). Angew. Chem. Int. Ed. 48, 3491–3493 (2009).
    OpenUrlPubMed
  11. ↵
    1. C. Bolli et al.
    , Synthesis, crystal structure, and reactivity of the strong methylating agent Me2B12Cl12. Angew. Chem. Int. Ed. 49, 3536–3538 (2010).
    OpenUrlCrossRefPubMed
  12. ↵
    1. N. S. Hosmane
    , Boron Science: New Technologies and Applications, (CRC, 2012).
  13. ↵
    1. M. F. Hawthorne,
    2. A. Maderna
    , Applications of radiolabeled boron clusters to the diagnosis and treatment of cancer. Chem. Rev. 99, 3421–3434 (1999).
    OpenUrlPubMed
  14. ↵
    1. C. D. Entwistle,
    2. T. B. Marder
    , Boron chemistry lights the way: Optical properties of molecular and polymeric systems. Angew. Chem. Int. Ed. 41, 2927–2931 (2002).
    OpenUrlCrossRefPubMed
  15. ↵
    1. J. Warneke,
    2. T. Dülcks,
    3. C. Knapp,
    4. D. Gabel
    , Collision-induced gas-phase reactions of perhalogenated closo-dodecaborate clusters—A comparative study. Phys. Chem. Chem. Phys. 13, 5712–5721 (2011).
    OpenUrlPubMed
  16. ↵
    1. M. Rohdenburg et al.
    , Superelectrophilic behavior of an anion demonstrated by the spontaneous binding of noble gases to [B12Cl11]−. Angew. Chem. Int. Ed. 56, 7680–7985 (2017).
    OpenUrl
  17. ↵
    1. M. Mayer et al.
    , Rational design of an argon-binding superelectrophilic anion. Proc. Natl. Acad. Sci. U.S.A. 116, 8167–8172 (2019).
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. D. Schröder,
    2. H. Schwarz
    , Gas-phase activation of methane by ligated transition-metal cations. Proc. Natl. Acad. Sci. U.S.A. 105, 18114–18119 (2008).
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. D. H. Ess,
    2. W. A. Goddard,
    3. R. A. Periana
    , Electrophilic, ambiphilic, and nucleophilic C−H bond activation: Understanding the electronic continuum of C−H bond activation through transition-state and reaction pathway interaction energy decompositions. Organometallics 29, 6459–6472 (2010).
    OpenUrl
  20. ↵
    1. C. Jenne,
    2. M. Keßler,
    3. J. Warneke
    , Protic anions [H(B12X12)]- (X = F, Cl, Br, I) that act as Brønsted acids in the gas phase. Chem. Eur. J. 21, 5887–5891 (2015).
    OpenUrl
  21. ↵
    1. L. Lipping et al.
    , Superacidity of closo-dodecaborate-based Brønsted acids: A DFT study. J. Phys. Chem. A 119, 735–743 (2015).
    OpenUrl
  22. ↵
    1. K. R. Asmis et al.
    , Gas-phase infrared spectrum of the protonated water dimer. Science 299, 1375–1377 (2003).
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. X.-S. Xue,
    2. P. Ji,
    3. B. Zhou,
    4. J.-P. Cheng
    , The essential role of bond energetics in C-H activation/functionalization. Chem. Rev. 117, 8622–8648 (2017).
    OpenUrl
  24. ↵
    1. J. Sommer,
    2. J. Bukala
    , Selective electrophilic activation of alkanes. Acc. Chem. Res. 26, 370–376 (1993).
    OpenUrlCrossRef
  25. ↵
    1. I. Akhrem,
    2. A. Orlinkov
    , Polyhalomethanes combined with Lewis acids in alkane chemistry. Chem. Rev. 107, 2037–2079 (2007).
    OpenUrlPubMed
  26. ↵
    1. Y.-X. Zhao,
    2. Z.-Y. Li,
    3. Y. Yang,
    4. S.-G. He
    , Methane activation by gas phase atomic clusters. Acc. Chem. Res. 51, 2603–2610 (2018).
    OpenUrl
  27. ↵
    1. J. Oxgaard,
    2. W. J. Tenn,
    3. R. J. Nielsen,
    4. R. A. Periana,
    5. W. A. Goddard
    , Mechanistic analysis of iridium heteroatom C−H activation: Evidence for an internal electrophilic substitution mechanism. Organometallics 26, 1565–1567 (2007).
    OpenUrl
  28. ↵
    1. Y.-X. Zhao et al.
    , Methane activation by gold-doped titanium oxide cluster anions with closed-shell electronic structures. Chem. Sci. 7, 4730–4735 (2016).
    OpenUrl
  29. ↵
    1. Q. Chen et al.
    , Thermal activation of methane by vanadium boride cluster cations VBn+ (n = 3-6). Phys. Chem. Chem. Phys. 20, 4641–4645 (2018).
    OpenUrl
  30. ↵
    1. Z. Huang et al.
    , Boron: Its role in energy related research and applications. Angew. Chem. Int. Ed. 59, 8800–8816 (2020).
    OpenUrl
  31. ↵
    1. V. Franchetti,
    2. B. H. Solka,
    3. W. E. Baitinger,
    4. J. W. Amy,
    5. R. G. Cooks
    , Soft landing of ions as a means of surface modification. Int. J. Mass Spectrom. 23, 29–35 (1977).
    OpenUrl
  32. ↵
    1. J. Laskin,
    2. G. E. Johnson,
    3. J. Warneke,
    4. V. Prabhakaran
    , From isolated ions to multilayer functional materials using ion soft landing. Angew. Chem. Int. Ed. 57, 16270–16284 (2018).
    OpenUrl
  33. ↵
    1. K. D. D. Gunaratne et al.
    , Design and performance of a high-flux electrospray ionization source for ion soft landing. Analyst 140, 2957–2963 (2015).
    OpenUrl
  34. ↵
    1. C. Yin,
    2. E. Tyo,
    3. K. Kuchta,
    4. B. von Issendorff,
    5. S. Vajda
    , Atomically precise (catalytic) particles synthesized by a novel cluster deposition instrument. J. Chem. Phys. 140, 174201 (2014).
    OpenUrl
  35. ↵
    1. R. E. Palmer,
    2. L. Cao,
    3. F. Yin
    , Note: Proof of principle of a new type of cluster beam source with potential for scale-up. Rev. Sci. Instrum. 87, 046103 (2016).
    OpenUrl
  36. ↵
    1. M. Pauly et al.
    , A hydrodynamically optimized nano-electrospray ionization source and vacuum interface. Analyst 139, 1856–1867 (2014).
    OpenUrl
  37. ↵
    1. P. V. Menezes et al.
    , Bombardment induced ion transport—Part II. Experimental potassium ion conductivities in borosilicate glass. Phys. Chem. Chem. Phys. 13, 20123–20128 (2011).
    OpenUrlPubMed
  38. ↵
    1. A. Böttcher et al.
    , Solid C58 films. Phys. Chem. Chem. Phys. 7, 2816–2820 (2005).
    OpenUrlPubMed
  39. ↵
    1. J. Warneke et al.
    , Self-organizing layers from complex molecular anions. Nat. Commun. 9, 1889 (2018).
    OpenUrl
  40. ↵
    1. N. Heine,
    2. K. R. Asmis
    , Cryogenic ion trap vibrational spectroscopy of hydrogen-bonded clusters relevant to atmospheric chemistry. Int. Rev. Phys. Chem. 34, 1–34 (2015).
    OpenUrlCrossRef
  41. ↵
    1. N. Heine,
    2. K. R. Asmis
    , Cryogenic ion trap vibrational spectroscopy of hydrogen-bonded clusters relevant to atmospheric chemistry. Int. Rev. Phys. Chem. 35, 507 (2016).
    OpenUrl
  42. ↵
    1. J. G. Black,
    2. E. Yablonovitch,
    3. N. Bloembergen,
    4. S. Mukamel
    , Collisionless multiphoton dissociation of SF6: A statistical thermodynamic process. Phys. Rev. Lett. 38, 1131–1134 (1977).
    OpenUrl
  43. ↵
    1. E. R. Grant,
    2. P. A. Schulz,
    3. A. S. Sudbo,
    4. Y. R. Shen,
    5. Y. T. Lee
    , Is multiphoton dissociation of molecules a statistical thermal process? Phys. Rev. Lett. 40, 115–118 (1978).
    OpenUrlCrossRef
  44. ↵
    1. V. N. Bagratashvili,
    2. V. S. Letokhov,
    3. A. A. Makarov,
    4. E. A. Ryabov
    , Multiple-photon infrared laser photophysics and photochemistry. I. Laser Chem. 1, 211–342 (1983).
    OpenUrl
  45. ↵
    1. D. J. Goebbert,
    2. G. Meijer,
    3. K. R. Asmis,
    4. T. Iguchi,
    5. K. Watanabe
    , 10 K ring electrode trap—Tandem mass spectrometer for infrared spectroscopy of mass selected ions. AIP Conf. Proc. 1104, 22–29 (2009).
    OpenUrl
  46. ↵
    1. D. J. Goebbert,
    2. T. Wende,
    3. R. Bergmann,
    4. G. Meijer,
    5. K. R. Asmis
    , Messenger-tagging electrosprayed ions: Vibrational spectroscopy of suberate dianions. J. Phys. Chem. A 113, 5874–5880 (2009).
    OpenUrlCrossRefPubMed
  47. ↵
    1. W. Schöllkopf et al.
    , The new IR and THz FEL facility at the Fritz Haber Institute in Berlin. Proc. SPIE 9512, 95121L (2015).
    OpenUrl
  48. ↵
    1. V. Geis,
    2. K. Guttsche,
    3. C. Knapp,
    4. H. Scherer,
    5. R. Uzun
    , Synthesis and characterization of synthetically useful salts of the weakly-coordinating dianion [B12Cl12]2−. Dalton Trans. 15, 2687–2694 (2009).
    OpenUrl
  49. ↵
    1. I. Tiritiris,
    2. T. Schleid
    , Die Kristallstrukturen der Dicaesium-Dodekahalogeno-closo-Dodekaborate Cs2[B12X12] (X = Cl, Br, I) und ihrer Hydrate. Z. Anorg. Allg. Chem. 630, 1555–1563 (2004).
    OpenUrl
  50. ↵
    1. Q. Hu,
    2. P. Wang,
    3. P. L. Gassman,
    4. J. Laskin
    , In situ studies of soft- and reactive landing of mass-selected ions using infrared reflection absorption spectroscopy. Anal. Chem. 81, 7302–7308 (2009).
    OpenUrlPubMed

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

Subscribers, for more details, please visit our Subscriptions FAQ.

Please click here to log into the PNAS submission website.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Direct functionalization of C−H bonds by electrophilic anions
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Direct functionalization of C−H bonds by electrophilic anions
Jonas Warneke, Martin Mayer, Markus Rohdenburg, Xin Ma, Judy K. Y. Liu, Max Grellmann, Sreekanta Debnath, Vladimir A. Azov, Edoardo Apra, Robert P. Young, Carsten Jenne, Grant E. Johnson, Hilkka I. Kenttämaa, Knut R. Asmis, Julia Laskin
Proceedings of the National Academy of Sciences Sep 2020, 117 (38) 23374-23379; DOI: 10.1073/pnas.2004432117

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Direct functionalization of C−H bonds by electrophilic anions
Jonas Warneke, Martin Mayer, Markus Rohdenburg, Xin Ma, Judy K. Y. Liu, Max Grellmann, Sreekanta Debnath, Vladimir A. Azov, Edoardo Apra, Robert P. Young, Carsten Jenne, Grant E. Johnson, Hilkka I. Kenttämaa, Knut R. Asmis, Julia Laskin
Proceedings of the National Academy of Sciences Sep 2020, 117 (38) 23374-23379; DOI: 10.1073/pnas.2004432117
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 117 (38)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Physical Sciences
  • Chemistry

Jump to section

  • Article
    • Abstract
    • Results and Discussion
    • Conclusion
    • Methods
    • Data Availability.
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Surgeons hands during surgery
Inner Workings: Advances in infectious disease treatment promise to expand the pool of donor organs
Despite myriad challenges, clinicians see room for progress.
Image credit: Shutterstock/David Tadevosian.
Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Double helix
Journal Club: Noncoding DNA shown to underlie function, cause limb malformations
Using CRISPR, researchers showed that a region some used to label “junk DNA” has a major role in a rare genetic disorder.
Image credit: Nathan Devery.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Multi-color molecular model
Enzymatic breakdown of PET plastic
A study demonstrates how two enzymes—MHETase and PETase—work synergistically to depolymerize the plastic pollutant PET.
Image credit: Aaron McGeehan (artist).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490