Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Generalists are more specialized in low-resource habitats, increasing stability of ecological network structure

View ORCID ProfileMoria L. Robinson and Sharon Y. Strauss
PNAS January 28, 2020 117 (4) 2043-2048; first published January 13, 2020 https://doi.org/10.1073/pnas.1820143117
Moria L. Robinson
aCenter for Population Biology, University of California, Davis, CA 95616;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Moria L. Robinson
  • For correspondence: mrobinson@ucdavis.edu
Sharon Y. Strauss
aCenter for Population Biology, University of California, Davis, CA 95616;bDepartment of Evolution and Ecology, University of California, Davis, CA 95616
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited by Rodolfo Dirzo, Department of Biology, Stanford University, Stanford, CA, and approved December 12, 2019 (received for review November 29, 2018)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Significance

The degree to which food webs are divided into “modules” of strongly interacting species is an important property conferring stability in ecological communities; however, the mechanisms causing variation in this emergent property are poorly understood in nature. Here, we document temporally consistent differences in plant-herbivore network modularity across two soil types. Next, we parse the mechanistic basis of this structural change between evolutionary constraint (e.g., prevalence of species with specialized versus generalized diet breadth) and interaction plasticity (e.g., shifts in “realized” diet breadth of generalist species). Our findings broaden understanding of abiotic context as a driver of food web structure, suggesting that higher modularity—and thus greater stability—may be a general network property in low-resource contexts.

Abstract

Linking mechanistic processes to the stability of ecological networks is a key frontier in ecology. In trophic networks, “modules”—groups of species that interact more with each other than with other members of the community—confer stability, mitigating effects of species loss or perturbation. Modularity, in turn, is shaped by the interplay between species’ diet breadth traits and environmental influences, which together dictate interaction structure. Despite the importance of network modularity, variation in this emergent property is poorly understood in complex natural systems. Using two years of field data, we quantified interactions between a rich community of lepidopteran herbivores and their host plants across a mosaic of low-resource serpentine and high-resource nonserpentine soils. We used literature and our own observations to categorize herbivore species as generalists (feeding on more than one plant family) or specialists (feeding on one plant family). In both years, the plant-herbivore network was more modular on serpentine than on nonserpentine soils—despite large differences in herbivore assemblage size across years. This structural outcome was primarily driven by reduction in the breadth of host plant use by generalist species, rather than by changes in the composition of species with different fundamental diet breadths. Greater modularity—and thus greater stability—reflects environmental conditions and plastic responses by generalist herbivores to low host plant quality. By considering the dual roles of species traits and ecological processes, we provide a deeper mechanistic understanding of network modularity, and suggest a role for resource availability in shaping network persistence.

  • ecological networks
  • plant-herbivore interactions
  • network modularity
  • resource availability hypothesis
  • herbivore diet breadth

Footnotes

  • ↵1To whom correspondence may be addressed. Email: mrobinson{at}ucdavis.edu.
  • Author contributions: M.L.R. and S.Y.S. designed research; M.L.R. performed research; M.L.R. analyzed data; and M.L.R. and S.Y.S. wrote the paper.

  • The authors declare no competing interest.

  • This article is a PNAS Direct Submission.

  • Data deposition: Data used in this paper can be found on Figshare, https://doi.org/10.6084/m9.figshare.11492343.v1. All code associated with these analyses can be found at GitHub, https://github.com/moria-robinson/PH-soil-networks-2019.

  • This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1820143117/-/DCSupplemental.

Published under the PNAS license.

View Full Text

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

Subscribers, for more details, please visit our Subscriptions FAQ.

Please click here to log into the PNAS submission website.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Generalists are more specialized in low-resource habitats, increasing stability of ecological network structure
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
Citation Tools
Generalists are more specialized in low-resource habitats, increasing stability of ecological network structure
Moria L. Robinson, Sharon Y. Strauss
Proceedings of the National Academy of Sciences Jan 2020, 117 (4) 2043-2048; DOI: 10.1073/pnas.1820143117

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Generalists are more specialized in low-resource habitats, increasing stability of ecological network structure
Moria L. Robinson, Sharon Y. Strauss
Proceedings of the National Academy of Sciences Jan 2020, 117 (4) 2043-2048; DOI: 10.1073/pnas.1820143117
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 117 (4)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Biological Sciences
  • Ecology

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Efforts are underway to exploit a strategy that could generate fusion with relative ease. Image credit: Princeton Plasma Physics Laboratory.
News Feature: Small-scale fusion tackles energy, space applications
Efforts are underway to exploit a strategy that could generate fusion with relative ease.
Image credit: Princeton Plasma Physics Laboratory.
A deep-learning algorithm could potentially improve diagnosis and classification of neurological abnormalities. Image courtesy of Weicheng Kuo, Christian Hӓne, Pratik Mukherjee, Jitendra Malik, and Esther Lim Yuh
Brain hemorrhage detection by artificial neural network
A deep-learning algorithm could potentially improve diagnosis and classification of neurological abnormalities.
Image courtesy of Weicheng Kuo, Christian Hӓne, Pratik Mukherjee, Jitendra Malik, and Esther L. Yuh.
A study finds a shift in onset of El Niño events from eastern to western Pacific and increased frequency of extreme El Niño events since the late 1970s. Image courtesy of NOAA National Environmental Satellite, Data, and Information Service (NESDIS).
Changing El Niño properties
A study finds a shift in onset of El Niño events from eastern to western Pacific and increased frequency of extreme El Niño events since the late 1970s.
Image courtesy of NOAA National Environmental Satellite, Data, and Information Service (NESDIS).
A study explores how various types of food affect both human health and the environment. Image courtesy of Pixabay/esigie.
Environmental and health impacts of food
A study explores how various types of food affect both human health and the environment.
Image courtesy of Pixabay/esigie.
Profile of NAS member and molecular biologist Mary Lou Guerinot. Image courtesy of Olga Zhaxybayeva (Dartmouth College, Hanover, NH).
Featured Profile
Profile of NAS member and molecular biologist Mary Lou Guerinot
Image courtesy of Olga Zhaxybayeva (Dartmouth College, Hanover, NH).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Classics
  • Front Matter
  • Teaching Resources
  • Anthropology
  • Chemistry
  • Physics
  • Sustainability Science

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2020 National Academy of Sciences. Online ISSN 1091-6490