Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Ventromedial prefrontal area 14 provides opposing regulation of threat and reward-elicited responses in the common marmoset

Zuzanna M. Stawicka, Roohollah Massoudi, Nicole K. Horst, Ken Koda, View ORCID ProfilePhilip L. R. Gaskin, View ORCID ProfileLaith Alexander, View ORCID ProfileAndrea M. Santangelo, Lauren McIver, Gemma J. Cockcroft, View ORCID ProfileChristian M. Wood, and View ORCID ProfileAngela C. Roberts
PNAS October 6, 2020 117 (40) 25116-25127; first published September 21, 2020; https://doi.org/10.1073/pnas.2009657117
Zuzanna M. Stawicka
aDepartment of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom;
bBehavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, United Kingdom;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roohollah Massoudi
aDepartment of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom;
bBehavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, United Kingdom;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nicole K. Horst
bBehavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, United Kingdom;
cDepartment of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ken Koda
aDepartment of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom;
bBehavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, United Kingdom;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Philip L. R. Gaskin
aDepartment of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom;
bBehavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, United Kingdom;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Philip L. R. Gaskin
Laith Alexander
aDepartment of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom;
bBehavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, United Kingdom;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Laith Alexander
Andrea M. Santangelo
aDepartment of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom;
bBehavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, United Kingdom;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Andrea M. Santangelo
Lauren McIver
aDepartment of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom;
bBehavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, United Kingdom;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gemma J. Cockcroft
aDepartment of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom;
bBehavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, United Kingdom;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christian M. Wood
aDepartment of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom;
bBehavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, United Kingdom;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Christian M. Wood
  • For correspondence: cmw84@cam.ac.uk acr4@cam.ac.uk
Angela C. Roberts
aDepartment of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom;
bBehavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, United Kingdom;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Angela C. Roberts
  • For correspondence: cmw84@cam.ac.uk acr4@cam.ac.uk
  1. Edited by Robert Desimone, Massachusetts Institute of Technology, Cambridge, MA, and approved August 24, 2020 (received for review June 11, 2020)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

Ventromedial prefrontal cortex is a large heterogenous region, which is dysfunctional in mood and anxiety disorders. Unfortunately, neuroimaging and focal lesion studies in humans have failed to resolve this heterogeneity, especially in relation to the symptom domains of enhanced negative emotion, blunted positive emotion, and autonomic dysfunction. We address this issue in marmoset monkeys, which have similar prefrontal organization to humans. By comparing inactivation and overactivation of area 14 within rostral ventromedial prefrontal cortex (vmPFC) across threatening and rewarding contexts, we reveal how area 14 overactivation heightens responsivity to distal threat and blunts appetitive arousal. Its lack of effect on basal cardiovascular reactivity and expression and extinction of certain proximal threat highlight its distinct profile of effects within the vmPFC.

Abstract

The ventromedial prefrontal cortex (vmPFC) is a key brain structure implicated in mood and anxiety disorders, based primarily on evidence from correlational neuroimaging studies. Composed of a number of brain regions with distinct architecture and connectivity, dissecting its functional heterogeneity will provide key insights into the symptomatology of these disorders. Focusing on area 14, lying on the medial and orbital surfaces of the gyrus rectus, this study addresses a key question of causality. Do changes in area 14 activity induce changes in threat- and reward-elicited responses within the nonhuman primate, the common marmoset, similar to that seen in mood and anxiety disorders? Area 14 overactivation was found to induce heightened responsivity to uncertain, low-imminence threat while blunting cardiovascular and behavioral anticipatory arousal to high-value food reward. Conversely, inactivation enhanced the arousal to high-value reward cues while dampening the acquisition of cardiovascular and behavioral responses to a Pavlovian threat cue. Basal cardiovascular activity, including heart rate variability and sympathovagal balance, which are dysfunctional in mood and anxiety disorders, are insensitive to alterations in area 14 activity as is the extinction of conditioned threat responses. The distinct pattern of dysregulation compared to neighboring region area 25 highlights the heterogeneity of function within vmPFC and reveals how the effects of area 14 overactivation on positive and negative reactivity mirror symptoms of anhedonia and anxiety that are so often comorbid in mood disorders.

  • ventromedial
  • orbitofrontal
  • anxiety
  • anhedonia
  • area 14

Footnotes

  • ↵1Z.M.S. and R.M. contributed equally to this work.

  • ↵2Present address: Pain and Neurology, Discovery Research Laboratory for Core Therapeutic Areas, Shionogi and Co. Ltd., Osaka 541-0045, Japan.

  • ↵3Present address: Biological Sciences, BenevolentAI, London W1T 5HD, United Kingdom.

  • ↵4Present address: St. Thomas’ Hospital, London SE1 7EH, United Kingdom.

  • ↵5C.M.W. and A.C.R. contributed equally to this work.

  • ↵6To whom correspondence may be addressed. Email: cmw84{at}cam.ac.uk or acr4{at}cam.ac.uk.
  • Author contributions: R.M., L.A., and A.C.R. designed research; R.M., N.K.H., K.K., P.L.R.G., A.M.S., L.M., G.J.C., C.M.W., and A.C.R. performed research; Z.M.S., R.M., and C.M.W. analyzed data; and Z.M.S., C.M.W., and A.C.R. wrote the paper.

  • The authors declare no competing interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2009657117/-/DCSupplemental.

Data Availability.

Behavioral and cardiovascular data have been deposited at the Mendeley Data repository, http://dx.doi.org/10.17632/76c2j7bbbd.1 (81).

Published under the PNAS license.

View Full Text

References

  1. 1.↵
    1. J. Hiser,
    2. M. Koenigs
    , The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biol. Psychiatry 83, 638–647 (2018).
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. D. G. Andrewes,
    2. L. M. Jenkins
    , The role of the amygdala and the ventromedial prefrontal cortex in emotional regulation: Implications for post-traumatic stress disorder. Neuropsychol. Rev. 29, 220–243 (2019).
    OpenUrl
  3. 3.↵
    1. P. H. Rudebeck,
    2. D. M. Bannerman,
    3. M. F. S. Rushworth
    , The contribution of distinct subregions of the ventromedial frontal cortex to emotion, social behavior, and decision making. Cogn. Affect. Behav. Neurosci. 8, 485–497 (2008).
    OpenUrlCrossRefPubMed
  4. 4.↵
    1. B. Myers-Schulz,
    2. M. Koenigs
    , Functional anatomy of ventromedial prefrontal cortex: Implications for mood and anxiety disorders. Mol. Psychiatry 17, 132–141 (2012).
    OpenUrlCrossRefPubMed
  5. 5.↵
    1. N. Palomero-Gallagher et al.
    , Functional organization of human subgenual cortical areas: Relationship between architectonical segregation and connectional heterogeneity. Neuroimage 115, 177–190 (2015).
    OpenUrlCrossRefPubMed
  6. 6.↵
    1. A. C. Roberts,
    2. H. F. Clarke
    , Why we need nonhuman primates to study the role of ventromedial prefrontal cortex in the regulation of threat- and reward-elicited responses. Proc. Natl. Acad. Sci. U.S.A. 116, 26297–26304 (2019).
    OpenUrlAbstract/FREE Full Text
  7. 7.↵
    1. M. Petrides
    , Comparative architectonic analysis of the human and the macaque frontal cortex. Handb. Neuropsychol. 11, 17–58 (1994).
    OpenUrl
  8. 8.↵
    1. H. Barbas,
    2. D. N. Pandya
    , Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 286, 353–375 (1989).
    OpenUrlCrossRefPubMed
  9. 9.↵
    1. D. V. Smith et al.
    , Distinct value signals in anterior and posterior ventromedial prefrontal cortex. J. Neurosci. 30, 2490–2495 (2010).
    OpenUrlAbstract/FREE Full Text
  10. 10.↵
    1. Z. Zhang,
    2. A. Mendelsohn,
    3. K. F. Manson,
    4. D. Schiller,
    5. I. Levy
    , Dissociating value representation and inhibition of inappropriate affective response during reversal learning in the ventromedial prefrontal cortex. eNeuro 2, ENEURO.0072-15.2015 (2015).
    OpenUrl
  11. 11.↵
    1. A. C. Roberts
    , Prefrontal regulation of threat-elicited behaviors: A pathway to translation. Annu. Rev. Psychol. 71, 357–387 (2020).
    OpenUrlCrossRefPubMed
  12. 12.↵
    1. M. R. Milad,
    2. G. J. Quirk
    , Fear extinction as a model for translational neuroscience: Ten years of progress. Annu. Rev. Psychol. 63, 129–151 (2012).
    OpenUrlCrossRefPubMed
  13. 13.↵
    1. E. A. Phelps,
    2. M. R. Delgado,
    3. K. I. Nearing,
    4. J. E. LeDoux
    , Extinction learning in humans: Role of the amygdala and vmPFC. Neuron 43, 897–905 (2004).
    OpenUrlCrossRefPubMed
  14. 14.↵
    1. M. R. Milad et al.
    , Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol. Psychiatry 62, 446–454 (2007).
    OpenUrlCrossRefPubMed
  15. 15.↵
    1. R. Kalisch et al.
    , Context-dependent human extinction memory is mediated by a ventromedial prefrontal and hippocampal network. J. Neurosci. 26, 9503–9511 (2006).
    OpenUrlAbstract/FREE Full Text
  16. 16.↵
    1. J. E. Dunsmoor et al.
    , Role of human ventromedial prefrontal cortex in learning and recall of enhanced extinction. J. Neurosci. 39, 3264–3276 (2019).
    OpenUrlAbstract/FREE Full Text
  17. 17.↵
    1. B. A. Vogt,
    2. G. Paxinos
    , Cytoarchitecture of mouse and rat cingulate cortex with human homologies. Brain Struct. Funct. 219, 185–192 (2014).
    OpenUrlCrossRefPubMed
  18. 18.↵
    1. H. S. Mayberg et al.,
    “Reciprocal limbic-cortical function and negative mood: Converging PET findings in depression and normal sadness” in Depression: The Science of Mental Health, (Taylor and Francis, 2013), pp. 245–253.
  19. 19.↵
    1. C. U. Wallis,
    2. R. N. Cardinal,
    3. L. Alexander,
    4. A. C. Roberts,
    5. H. F. Clarke
    , Opposing roles of primate areas 25 and 32 and their putative rodent homologs in the regulation of negative emotion. Proc. Natl. Acad. Sci. U.S.A. 114, E4075–E4084 (2017).
    OpenUrlAbstract/FREE Full Text
  20. 20.↵
    1. L. Alexander et al.
    , Fractionating blunted reward processing characteristic of anhedonia by over-activating primate subgenual anterior cingulate cortex. Neuron 101, 307–320.e6 (2019).
    OpenUrl
  21. 21.↵
    1. M. R. Milad,
    2. S. L. Rauch
    , The role of the orbitofrontal cortex in anxiety disorders. Ann. N. Y. Acad. Sci. 1121, 546–561 (2007).
    OpenUrlCrossRefPubMed
  22. 22.↵
    1. S. Kühn,
    2. F. Schubert,
    3. J. Gallinat
    , Structural correlates of trait anxiety: Reduced thickness in medial orbitofrontal cortex accompanied by volume increase in nucleus accumbens. J. Affect. Disord. 134, 315–319 (2011).
    OpenUrlCrossRefPubMed
  23. 23.↵
    1. S. T. Carmichael,
    2. J. L. Price
    , Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. J. Comp. Neurol. 371, 179–207 (1996).
    OpenUrlCrossRefPubMed
  24. 24.↵
    1. S. T. Carmichael,
    2. J. L. Price
    , Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J. Comp. Neurol. 363, 615–641 (1995).
    OpenUrlCrossRefPubMed
  25. 25.↵
    1. S. N. Avery et al.
    , BNST neurocircuitry in humans. Neuroimage 91, 311–323 (2014).
    OpenUrlCrossRefPubMed
  26. 26.↵
    1. X. An,
    2. R. Bandler,
    3. D. Ongür,
    4. J. L. Price
    , Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys. J. Comp. Neurol. 401, 455–479 (1998).
    OpenUrlCrossRefPubMed
  27. 27.↵
    1. M. S. Pujara,
    2. P. H. Rudebeck,
    3. N. K. Ciesinski,
    4. E. A. Murray
    , Heightened defensive responses following subtotal lesions of macaque orbitofrontal cortex. J. Neurosci. 39, 4133–4141 (2019).
    OpenUrlAbstract/FREE Full Text
  28. 28.↵
    1. E. A. Murray,
    2. P. H. Rudebeck
    , Specializations for reward-guided decision-making in the primate ventral prefrontal cortex. Nat. Rev. Neurosci. 19, 404–417 (2018).
    OpenUrlCrossRefPubMed
  29. 29.↵
    1. J. N. Perusini,
    2. M. S. Fanselow
    , Neurobehavioral perspectives on the distinction between fear and anxiety. Learn. Mem. 22, 417–425 (2015).
    OpenUrlAbstract/FREE Full Text
  30. 30.↵
    1. D. Mobbs,
    2. D. B. Headley,
    3. W. Ding,
    4. P. Dayan
    , Space, time, and fear: Survival computations along defensive circuits. Trends Cogn. Sci. 24, 228–241 (2020).
    OpenUrl
  31. 31.↵
    1. S. Yao,
    2. S. Qi,
    3. K. M. Kendrick,
    4. D. Mobbs
    , Attentional set to safety recruits the ventral medial prefrontal cortex. Sci. Rep. 8, 15395 (2018).
    OpenUrl
  32. 32.↵
    1. M. T. Treadway,
    2. D. H. Zald
    , Reconsidering anhedonia in depression: Lessons from translational neuroscience. Neurosci. Biobehav. Rev. 35, 537–555 (2011).
    OpenUrlCrossRefPubMed
  33. 33.↵
    1. R. M. Carney et al.
    , Depression, heart rate variability, and acute myocardial infarction. Circulation 104, 2024–2028 (2001).
    OpenUrlAbstract/FREE Full Text
  34. 34.↵
    1. R. D. Lane et al.
    , Subgenual anterior cingulate cortex activity covariation with cardiac vagal control is altered in depression. J. Affect. Disord. 150, 565–570 (2013).
    OpenUrlCrossRefPubMed
  35. 35.↵
    1. P. B. Fitzgerald,
    2. A. R. Laird,
    3. J. Maller,
    4. Z. J. Daskalakis
    , A meta-analytic study of changes in brain activation in depression. Hum. Brain Mapp. 29, 683–695 (2008).
    OpenUrlCrossRefPubMed
  36. 36.↵
    1. H. Ito et al.
    , Hypoperfusion in the limbic system and prefrontal cortex in depression: SPECT with anatomic standardization technique. J. Nucl. Med. 37, 410–414 (1996).
    OpenUrlAbstract/FREE Full Text
  37. 37.↵
    1. H. S. Mayberg,
    2. P. J. Lewis,
    3. W. Regenold,
    4. H. N. Wagner Jr.
    , Paralimbic hypoperfusion in unipolar depression. J. Nucl. Med. 35, 929–934 (1994).
    OpenUrlAbstract/FREE Full Text
  38. 38.↵
    1. W. C. Drevets,
    2. J. L. Price,
    3. M. L. Furey
    , Brain structural and functional abnormalities in mood disorders: Implications for neurocircuitry models of depression. Brain Struct. Funct. 213, 93–118 (2008).
    OpenUrlCrossRefPubMed
  39. 39.↵
    1. W. C. Drevets et al.
    , A functional anatomical study of unipolar depression. J. Neurosci. 12, 3628–3641 (1992).
    OpenUrlAbstract/FREE Full Text
  40. 40.↵
    1. D. Ebert,
    2. K. P. Ebmeier
    , The role of the cingulate gyrus in depression: From functional anatomy to neurochemistry. Biol. Psychiatry 39, 1044–1050 (1996).
    OpenUrlCrossRefPubMed
  41. 41.↵
    1. S. K. L. Quah,
    2. G. J. Cockcroft,
    3. L. McIver,
    4. A. M. Santangelo,
    5. A. C. Roberts
    , Avoidant coping style to high imminence threat is linked to higher anxiety-like behavior. Front. Behav. Neurosci. 14, 34 (2020).
    OpenUrl
  42. 42.↵
    1. A. Der-Avakian,
    2. A. Markou
    , The neurobiology of anhedonia and other reward-related deficits. Trends Neurosci. 35, 68–77 (2012).
    OpenUrlCrossRefPubMed
  43. 43.↵
    1. J. L. Price
    , Definition of the orbital cortex in relation to specific connections with limbic and visceral structures and other cortical regions. Ann. N. Y. Acad. Sci. 1121, 54–71 (2007).
    OpenUrlCrossRefPubMed
  44. 44.↵
    1. J. Rodriguez-Romaguera,
    2. F. H. Do-Monte,
    3. Y. Tanimura,
    4. G. J. Quirk,
    5. S. N. Haber
    , Enhancement of fear extinction with deep brain stimulation: Evidence for medial orbitofrontal involvement. Neuropsychopharmacology 40, 1726–1733 (2015).
    OpenUrl
  45. 45.↵
    1. A. S. Fox et al.
    , Orbitofrontal cortex lesions alter anxiety-related activity in the primate bed nucleus of stria terminalis. J. Neurosci. 30, 7023–7027 (2010).
    OpenUrlAbstract/FREE Full Text
  46. 46.↵
    1. A. Izquierdo,
    2. R. K. Suda,
    3. E. A. Murray
    , Comparison of the effects of bilateral orbital prefrontal cortex lesions and amygdala lesions on emotional responses in rhesus monkeys. J. Neurosci. 25, 8534–8542 (2005).
    OpenUrlAbstract/FREE Full Text
  47. 47.↵
    1. N. H. Kalin,
    2. S. E. Shelton,
    3. R. J. Davidson
    , Role of the primate orbitofrontal cortex in mediating anxious temperament. Biol. Psychiatry 62, 1134–1139 (2007).
    OpenUrlCrossRefPubMed
  48. 48.↵
    1. C. Agustín-Pavón et al.
    , Lesions of ventrolateral prefrontal or anterior orbitofrontal cortex in primates heighten negative emotion. Biol. Psychiatry 72, 266–272 (2012).
    OpenUrlCrossRefPubMed
  49. 49.↵
    1. Z. M. Stawicka,
    2. R. Massoudi,
    3. L. Oikonomidis,
    4. N. K. Horst,
    5. A. C. Roberts,
    “Opposing contributions of subregions of the primate orbitofrontal cortex to the regulation of threat in the common marmoset” in Neuroscience 2019 SfN Annual Meeting, (Society for Neuroscience, 2019), p. 594.09/U38.
  50. 50.↵
    1. M. J. Kim,
    2. P. J. Whalen
    , The structural integrity of an amygdala-prefrontal pathway predicts trait anxiety. J. Neurosci. 29, 11614–11618 (2009).
    OpenUrlAbstract/FREE Full Text
  51. 51.↵
    1. S. L. Rauch,
    2. C. R. Savage,
    3. N. M. Alpert,
    4. A. J. Fischman,
    5. M. A. Jenike
    , The functional neuroanatomy of anxiety: A study of three disorders using positron emission tomography and symptom provocation. Biol. Psychiatry 42, 446–452 (1997).
    OpenUrlCrossRefPubMed
  52. 52.↵
    1. N. M. Batelaan,
    2. A. Seldenrijk,
    3. M. Bot,
    4. A. J. L. M. van Balkom,
    5. B. W. J. H. Penninx
    , Anxiety and new onset of cardiovascular disease: Critical review and meta-analysis. Br. J. Psychiatry 208, 223–231 (2016).
    OpenUrlAbstract/FREE Full Text
  53. 53.↵
    1. C. B. Nemeroff,
    2. P. J. Goldschmidt-Clermont
    , Heartache and heartbreak—the link between depression and cardiovascular disease. Nat. Rev. Cardiol. 9, 526–539 (2012).
    OpenUrlCrossRefPubMed
  54. 54.↵
    1. E. E. Benarroch
    , The central autonomic network: Functional organization, dysfunction, and perspective. Mayo Clin. Proc. 68, 988–1001 (1993).
    OpenUrlCrossRefPubMed
  55. 55.↵
    1. A. T. Ginty,
    2. S. M. Conklin
    , High perceived stress in relation to life events is associated with blunted cardiac reactivity. Biol. Psychol. 86, 383–385 (2011).
    OpenUrlCrossRefPubMed
  56. 56.↵
    1. J. L. Zeredo et al.
    , Glutamate within the marmoset anterior hippocampus interacts with area 25 to regulate the behavioral and cardiovascular correlates of high-trait anxiety. J. Neurosci. 39, 3094–3107 (2019).
    OpenUrlAbstract/FREE Full Text
  57. 57.↵
    1. M. P. Noonan et al.
    , Separate value comparison and learning mechanisms in macaque medial and lateral orbitofrontal cortex. Proc. Natl. Acad. Sci. U.S.A. 107, 20547–20552 (2010).
    OpenUrlAbstract/FREE Full Text
  58. 58.↵
    1. P. H. Rudebeck,
    2. E. A. Murray
    , Balkanizing the primate orbitofrontal cortex: Distinct subregions for comparing and contrasting values. Ann. N. Y. Acad. Sci. 1239, 1–13 (2011).
    OpenUrlCrossRefPubMed
  59. 59.↵
    1. G. K. Papageorgiou et al.
    , Inverted activity patterns in ventromedial prefrontal cortex during value-guided decision-making in a less-is-more task. Nat. Commun. 8, 1886 (2017).
    OpenUrl
  60. 60.↵
    1. M. P. Noonan,
    2. B. K. H. Chau,
    3. M. F. S. Rushworth,
    4. L. K. Fellows
    , Contrasting effects of medial and lateral orbitofrontal cortex lesions on credit assignment and decision-making in humans. J. Neurosci. 37, 7023–7035 (2017).
    OpenUrlAbstract/FREE Full Text
  61. 61.↵
    1. T. H. B. FitzGerald,
    2. B. Seymour,
    3. R. J. Dolan
    , The role of human orbitofrontal cortex in value comparison for incommensurable objects. J. Neurosci. 29, 8388–8395 (2009).
    OpenUrlAbstract/FREE Full Text
  62. 62.↵
    1. L. A. Bradfield,
    2. G. Hart
    , Rodent medial and lateral orbitofrontal cortices represent unique components of cognitive maps of task space. Neurosci. Biobehav. Rev. 108, 287–294 (2020).
    OpenUrl
  63. 63.↵
    1. I. Berlin,
    2. L. Givry-Steiner,
    3. Y. Lecrubier,
    4. A. J. Puech
    , Measures of anhedonia and hedonic responses to sucrose in depressive and schizophrenic patients in comparison with healthy subjects. Eur. Psychiatry 13, 303–309 (1998).
    OpenUrlCrossRefPubMed
  64. 64.↵
    1. G. Arrondo et al.
    , Hedonic and disgust taste perception in borderline personality disorder and depression. Br. J. Psychiatry 207, 79–80 (2015).
    OpenUrlAbstract/FREE Full Text
  65. 65.↵
    1. G. S. Dichter,
    2. M. J. Smoski,
    3. A. B. Kampov-Polevoy,
    4. R. Gallop,
    5. J. C. Garbutt
    , Unipolar depression does not moderate responses to the sweet taste test. Depress. Anxiety 27, 859–863 (2010).
    OpenUrlCrossRefPubMed
  66. 66.↵
    1. C. McCabe,
    2. C. Woffindale,
    3. C. J. Harmer,
    4. P. J. Cowen
    , Neural processing of reward and punishment in young people at increased familial risk of depression. Biol. Psychiatry 72, 588–594 (2012).
    OpenUrlCrossRefPubMed
  67. 67.↵
    1. E. K. Diekhof,
    2. L. Kaps,
    3. P. Falkai,
    4. O. Gruber
    , The role of the human ventral striatum and the medial orbitofrontal cortex in the representation of reward magnitude—an activation likelihood estimation meta-analysis of neuroimaging studies of passive reward expectancy and outcome processing. Neuropsychologia 50, 1252–1266 (2012).
    OpenUrlCrossRefPubMed
  68. 68.↵
    1. D. Ongür,
    2. X. An,
    3. J. L. Price
    , Prefrontal cortical projections to the hypothalamus in macaque monkeys. J. Comp. Neurol. 401, 480–505 (1998).
    OpenUrlCrossRefPubMed
  69. 69.↵
    1. K. Iigaya,
    2. J. Horiuchi,
    3. L. M. McDowall,
    4. R. A. L. Dampney
    , Topographical specificity of regulation of respiratory and renal sympathetic activity by the midbrain dorsolateral periaqueductal gray. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R853–R861 (2010).
    OpenUrlCrossRefPubMed
  70. 70.↵
    1. A. C. Roberts et al.
    , Forebrain connectivity of the prefrontal cortex in the marmoset monkey (Callithrix jacchus): An anterograde and retrograde tract-tracing study. J. Comp. Neurol. 502, 86–112 (2007).
    OpenUrlCrossRefPubMed
  71. 71.↵
    1. H. F. Clarke,
    2. N. K. Horst,
    3. A. C. Roberts
    , Regional inactivations of primate ventral prefrontal cortex reveal two distinct mechanisms underlying negative bias in decision making. Proc. Natl. Acad. Sci. U.S.A. 112, 4176–4181 (2015).
    OpenUrlAbstract/FREE Full Text
  72. 72.↵
    1. C. M. Stopper,
    2. S. B. Floresco
    , Contributions of the nucleus accumbens and its subregions to different aspects of risk-based decision making. Cogn. Affect. Behav. Neurosci. 11, 97–112 (2011).
    OpenUrlCrossRefPubMed
  73. 73.↵
    1. C. S. John et al.
    , Blockade of astrocytic glutamate uptake in the prefrontal cortex induces anhedonia. Neuropsychopharmacology 37, 2467–2475 (2012).
    OpenUrlCrossRefPubMed
  74. 74.↵
    1. R. N. Cardinal,
    2. M. R. F. Aitken
    , Whisker: A client-server high-performance multimedia research control system. Behav. Res. Methods 42, 1059–1071 (2010).
    OpenUrlCrossRefPubMed
  75. 75.↵
    1. Y. Mikheenko et al.
    , Autonomic, behavioral, and neural analyses of mild conditioned negative affect in marmosets. Behav. Neurosci. 124, 192–203 (2010).
    OpenUrlCrossRefPubMed
  76. 76.↵
    1. M. Toichi,
    2. T. Sugiura,
    3. T. Murai,
    4. A. Sengoku
    , A new method of assessing cardiac autonomic function and its comparison with spectral analysis and coefficient of variation of R-R interval. J. Auton. Nerv. Syst. 62, 79–84 (1997).
    OpenUrlCrossRefPubMed
  77. 77.↵
    1. Y. L. Reekie,
    2. K. Braesicke,
    3. M. S. Man,
    4. A. C. Roberts
    , Uncoupling of behavioral and autonomic responses after lesions of the primate orbitofrontal cortex. Proc. Natl. Acad. Sci. U.S.A. 105, 9787–9792 (2008).
    OpenUrlAbstract/FREE Full Text
  78. 78.↵
    1. G. Paxinos,
    2. C. Watson,
    3. M. Petrides,
    4. M. Rosa,
    5. H. Tokuno
    , The Marmoset Brain in Stereotaxic Coordinates, (Elsevier, 2012).
  79. 79.↵
    1. D. Ongür,
    2. J. L. Price
    , The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb. Cortex 10, 206–219 (2000).
    OpenUrlCrossRefPubMed
  80. 80.↵
    1. G. Paxinos
    1. N. Palomero-Gallagher,
    2. K. Zilles,
    “Isocortex” in The Rat Nervous System: Fourth Edition, G. Paxinos, Ed. (Academic Press, San Diego, 2015), pp. 601–625.
  81. 81.↵
    1. Z. M. Stawicka et al.
    , Ventromedial prefrontal area 14 provides opposing regulation of threat and reward-elicited responses in the common marmoset. Mendeley Data Repository. http://dx.doi.org/10.17632/76c2j7bbbd.1. Deposited 8 September 2020.

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

Subscribers, for more details, please visit our Subscriptions FAQ.

Please click here to log into the PNAS submission website.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Ventromedial prefrontal area 14 provides opposing regulation of threat and reward-elicited responses in the common marmoset
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Ventromedial prefrontal area 14 provides opposing regulation of threat and reward-elicited responses in the common marmoset
Zuzanna M. Stawicka, Roohollah Massoudi, Nicole K. Horst, Ken Koda, Philip L. R. Gaskin, Laith Alexander, Andrea M. Santangelo, Lauren McIver, Gemma J. Cockcroft, Christian M. Wood, Angela C. Roberts
Proceedings of the National Academy of Sciences Oct 2020, 117 (40) 25116-25127; DOI: 10.1073/pnas.2009657117

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Ventromedial prefrontal area 14 provides opposing regulation of threat and reward-elicited responses in the common marmoset
Zuzanna M. Stawicka, Roohollah Massoudi, Nicole K. Horst, Ken Koda, Philip L. R. Gaskin, Laith Alexander, Andrea M. Santangelo, Lauren McIver, Gemma J. Cockcroft, Christian M. Wood, Angela C. Roberts
Proceedings of the National Academy of Sciences Oct 2020, 117 (40) 25116-25127; DOI: 10.1073/pnas.2009657117
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 117 (40)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Biological Sciences
  • Neuroscience

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Materials and Methods
    • Data Availability.
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Abstract depiction of a guitar and musical note
Science & Culture: At the nexus of music and medicine, some see disease treatments
Although the evidence is still limited, a growing body of research suggests music may have beneficial effects for diseases such as Parkinson’s.
Image credit: Shutterstock/agsandrew.
Large piece of gold
News Feature: Tracing gold's cosmic origins
Astronomers thought they’d finally figured out where gold and other heavy elements in the universe came from. In light of recent results, they’re not so sure.
Image credit: Science Source/Tom McHugh.
Dancers in red dresses
Journal Club: Friends appear to share patterns of brain activity
Researchers are still trying to understand what causes this strong correlation between neural and social networks.
Image credit: Shutterstock/Yeongsik Im.
White and blue bird
Hazards of ozone pollution to birds
Amanda Rodewald, Ivan Rudik, and Catherine Kling talk about the hazards of ozone pollution to birds.
Listen
Past PodcastsSubscribe
Goats standing in a pin
Transplantation of sperm-producing stem cells
CRISPR-Cas9 gene editing can improve the effectiveness of spermatogonial stem cell transplantation in mice and livestock, a study finds.
Image credit: Jon M. Oatley.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490