Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Melatonin promotes sleep by activating the BK channel in C. elegans

Longgang Niu, Yan Li, Pengyu Zong, View ORCID ProfilePing Liu, View ORCID ProfileYuan Shui, View ORCID ProfileBojun Chen, and Zhao-Wen Wang
PNAS October 6, 2020 117 (40) 25128-25137; first published September 21, 2020; https://doi.org/10.1073/pnas.2010928117
Longgang Niu
aDepartment of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030-3401
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yan Li
aDepartment of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030-3401
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pengyu Zong
aDepartment of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030-3401
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ping Liu
aDepartment of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030-3401
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ping Liu
Yuan Shui
aDepartment of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030-3401
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yuan Shui
Bojun Chen
aDepartment of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030-3401
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Bojun Chen
  • For correspondence: bochen@uchc.edu zwwang@uchc.edu
Zhao-Wen Wang
aDepartment of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030-3401
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: bochen@uchc.edu zwwang@uchc.edu
  1. Edited by Richard W. Aldrich, The University of Texas at Austin, Austin, TX, and approved August 28, 2020 (received for review May 28, 2020)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

Melatonin (Mel) promotes sleep through G protein-coupled Mel receptors. However, the downstream molecular target(s) of the Mel receptors to produce the sleep effect remains enigmatic. The study shows that a potassium channel, the BK channel, plays a role in sleep and that Mel promotes sleep by activating this channel through a specific Mel receptor.

Abstract

Melatonin (Mel) promotes sleep through G protein-coupled receptors. However, the downstream molecular target(s) is unknown. We identified the Caenorhabditis elegans BK channel SLO-1 as a molecular target of the Mel receptor PCDR-1-. Knockout of pcdr-1, slo-1, or homt-1 (a gene required for Mel synthesis) causes substantially increased neurotransmitter release and shortened sleep duration, and these effects are nonadditive in double knockouts. Exogenous Mel inhibits neurotransmitter release and promotes sleep in wild-type (WT) but not pcdr-1 and slo-1 mutants. In a heterologous expression system, Mel activates the human BK channel (hSlo1) in a membrane-delimited manner in the presence of the Mel receptor MT1 but not MT2. A peptide acting to release free Gβγ also activates hSlo1 in a MT1-dependent and membrane-delimited manner, whereas a Gβλ inhibitor abolishes the stimulating effect of Mel. Our results suggest that Mel promotes sleep by activating the BK channel through a specific Mel receptor and Gβλ.

  • melatonin
  • BK channel
  • PCDR-1
  • melatonin receptor
  • sleep

Footnotes

  • ↵1Present address: Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.

  • ↵2Present address: Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

  • ↵3To whom correspondence may be addressed. Email: bochen{at}uchc.edu or zwwang{at}uchc.edu.
  • Author contributions: L.N., B.C., and Z.-W.W. designed research; L.N., Y.L., P.Z., P.L., Y.S., and B.C. performed research; L.N., P.Z., and P.L. analyzed data; and Z.-W.W. wrote the paper.

  • The authors declare no competing interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2010928117/-/DCSupplemental.

Data Availability.

All study data are included in the article and SI Appendix.

Published under the PNAS license.

View Full Text

References

  1. ↵
    1. D. C. Fernandez,
    2. Y. T. Chang,
    3. S. Hattar,
    4. S. K. Chen
    , Architecture of retinal projections to the central circadian pacemaker. Proc. Natl. Acad. Sci. U.S.A. 113, 6047–6052 (2016).
    OpenUrlAbstract/FREE Full Text
  2. ↵
    1. J. Cipolla-Neto,
    2. F. G. D. Amaral
    , Melatonin as a hormone: New physiological and clinical insights. Endocr. Rev. 39, 990–1028 (2018).
    OpenUrlPubMed
  3. ↵
    1. J. Liu et al.
    , MT1 and MT2 melatonin receptors: A therapeutic perspective. Annu. Rev. Pharmacol. Toxicol. 56, 361–383 (2016).
    OpenUrlCrossRefPubMed
  4. ↵
    1. R. Jockers et al.
    , Update on melatonin receptors: IUPHAR review 20. Br. J. Pharmacol. 173, 2702–2725 (2016).
    OpenUrlCrossRef
  5. ↵
    1. S. Comai,
    2. R. Ochoa-Sanchez,
    3. G. Gobbi
    , Sleep-wake characterization of double MT1/MT2 receptor knockout mice and comparison with MT1 and MT2 receptor knockout mice. Behav. Brain Res. 243, 231–238 (2013).
    OpenUrlCrossRefPubMed
  6. ↵
    1. C. von Gall et al.
    , Rhythmic gene expression in pituitary depends on heterologous sensitization by the neurohormone melatonin. Nat. Neurosci. 5, 234–238 (2002).
    OpenUrlCrossRefPubMed
  7. ↵
    1. A. Jilg et al.
    , Rhythms in clock proteins in the mouse pars tuberalis depend on MT1 melatonin receptor signalling. Eur. J. Neurosci. 22, 2845–2854 (2005).
    OpenUrlCrossRefPubMed
  8. ↵
    1. G. Gobbi,
    2. S. Comai
    , Differential function of melatonin MT1 and MT2 receptors in REM and NREM sleep. Front. Endocrinol. (Lausanne) 10, 87 (2019).
    OpenUrl
  9. ↵
    1. M. L. Dubocovich et al.
    , International Union of basic and clinical pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol. Rev. 62, 343–380 (2010).
    OpenUrlAbstract/FREE Full Text
  10. ↵
    1. A. Benleulmi-Chaachoua et al.
    , Protein interactome mining defines melatonin MT1 receptors as integral component of presynaptic protein complexes of neurons. J. Pineal Res. 60, 95–108 (2016).
    OpenUrlCrossRefPubMed
  11. ↵
    1. M. Griguoli,
    2. M. Sgritta,
    3. E. Cherubini
    , Presynaptic BK channels control transmitter release: Physiological relevance and potential therapeutic implications. J. Physiol. 594, 3489–3500 (2016).
    OpenUrlCrossRefPubMed
  12. ↵
    1. Z. W. Wang
    1. L. O. Trussell,
    2. M. T. Roberts,
    “The role of potassium channels in the regulation of neurotransmitter release” in in Molecular Mechanisms of Neurotransmitter Release, Z. W. Wang, Ed. (Humana Press, Totowa, NJ, 2008), pp. 171–185.
  13. ↵
    1. Z. W. Wang
    , Regulation of synaptic transmission by presynaptic CaMKII and BK channels. Mol. Neurobiol. 38, 153–166 (2008).
    OpenUrlCrossRefPubMed
  14. ↵
    1. S. Panda et al.
    , Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109, 307–320 (2002).
    OpenUrlCrossRefPubMed
  15. ↵
    1. A. L. Meredith et al.
    , BK calcium-activated potassium channels regulate circadian behavioral rhythms and pacemaker output. Nat. Neurosci. 9, 1041–1049 (2006).
    OpenUrlCrossRefPubMed
  16. ↵
    1. H. Mizutani et al.
    , Modulation of Ca2+ oscillation and melatonin secretion by BKCa channel activity in rat pinealocytes. Am. J. Physiol. Cell Physiol. 310, C740–C747 (2016).
    OpenUrlCrossRefPubMed
  17. ↵
    1. A. Crocker,
    2. M. Shahidullah,
    3. I. B. Levitan,
    4. A. Sehgal
    , Identification of a neural circuit that underlies the effects of octopamine on sleep:wake behavior. Neuron 65, 670–681 (2010).
    OpenUrlCrossRefPubMed
  18. ↵
    1. N. F. Trojanowski,
    2. D. M. Raizen
    , Call it worm sleep. Trends Neurosci. 39, 54–62 (2016).
    OpenUrlCrossRefPubMed
  19. ↵
    1. D. M. Raizen et al.
    , Lethargus is a Caenorhabditis elegans sleep-like state. Nature 451, 569–572 (2008).
    OpenUrlCrossRefPubMed
  20. ↵
    1. M. Jeon,
    2. H. F. Gardner,
    3. E. A. Miller,
    4. J. Deshler,
    5. A. E. Rougvie
    , Similarity of the C. elegans developmental timing protein LIN-42 to circadian rhythm proteins. Science 286, 1141–1146 (1999).
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. C. Cirelli
    , The genetic and molecular regulation of sleep: From fruit flies to humans. Nat. Rev. Neurosci. 10, 549–560 (2009).
    OpenUrlCrossRefPubMed
  22. ↵
    1. M. D. Nelson,
    2. D. M. Raizen
    , A sleep state during C. elegans development. Curr. Opin. Neurobiol. 23, 824–830 (2013).
    OpenUrlCrossRefPubMed
  23. ↵
    1. A. Sehgal,
    2. E. Mignot
    , Genetics of sleep and sleep disorders. Cell 146, 194–207 (2011).
    OpenUrlCrossRefPubMed
  24. ↵
    1. D. Tanaka,
    2. K. Furusawa,
    3. K. Kameyama,
    4. H. Okamoto,
    5. M. Doi
    , Melatonin signaling regulates locomotion behavior and homeostatic states through distinct receptor pathways in Caenorhabditis elegans. Neuropharmacology 53, 157–168 (2007).
    OpenUrlCrossRefPubMed
  25. ↵
    1. C. D. Keating et al.
    , Whole-genome analysis of 60 G protein-coupled receptors in Caenorhabditis elegans by gene knockout with RNAi. Curr. Biol. 13, 1715–1720 (2003).
    OpenUrlCrossRefPubMed
  26. ↵
    1. B. Chen et al.
    , A novel auxiliary subunit critical to BK channel function in Caenorhabditis elegans. J. Neurosci. 30, 16651–16661 (2010).
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. B. Chen et al.
    , α-Catulin CTN-1 is required for BK channel subcellular localization in C. elegans body-wall muscle cells. EMBO J. 29, 3184–3195 (2010).
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. B. Chen,
    2. P. Liu,
    3. H. Zhan,
    4. Z. W. Wang
    , Dystrobrevin controls neurotransmitter release and muscle Ca(2+) transients by localizing BK channels in Caenorhabditis elegans. J. Neurosci. 31, 17338–17347 (2011).
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. D. X. Tan,
    2. L. C. Manchester,
    3. E. Sanchez-Barcelo,
    4. M. D. Mediavilla,
    5. R. J. Reiter
    , Significance of high levels of endogenous melatonin in Mammalian cerebrospinal fluid and in the central nervous system. Curr. Neuropharmacol. 8, 162–167 (2010).
    OpenUrlPubMed
  30. ↵
    1. A. Anderson,
    2. Y. L. Chew,
    3. W. Schafer,
    4. R. McMullan
    , Identification of a conserved, orphan G protein-coupled receptor required for efficient pathogen clearance in Caenorhabditis elegans. Infect. Immun. 87, e00034-19 (2019).
    OpenUrl
  31. ↵
    1. Z. W. Wang,
    2. O. Saifee,
    3. M. L. Nonet,
    4. L. Salkoff
    , SLO-1 potassium channels control quantal content of neurotransmitter release at the C. elegans neuromuscular junction. Neuron 32, 867–881 (2001).
    OpenUrlCrossRefPubMed
  32. ↵
    1. M. L. Migliori et al.
    , Daily variation in melatonin synthesis and arylalkylamine N-acetyltransferase activity in the nematode Caenorhabditis elegans. J. Pineal Res. 53, 38–46 (2012).
    OpenUrlCrossRefPubMed
  33. ↵
    1. J. Borjigin,
    2. X. Li,
    3. S. H. Snyder
    , The pineal gland and melatonin: Molecular and pharmacologic regulation. Annu. Rev. Pharmacol. Toxicol. 39, 53–65 (1999).
    OpenUrlCrossRefPubMed
  34. ↵
    1. K. Schuske,
    2. A. A. Beg,
    3. E. M. Jorgensen
    , The GABA nervous system in C. elegans. Trends Neurosci. 27, 407–414 (2004).
    OpenUrlCrossRefPubMed
  35. ↵
    1. L. R. Varshney,
    2. B. L. Chen,
    3. E. Paniagua,
    4. D. H. Hall,
    5. D. B. Chklovskii
    , Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput. Biol. 7, e1001066 (2011).
    OpenUrlCrossRefPubMed
  36. ↵
    1. A. Yuan et al.
    , SLO-2, a K+ channel with an unusual Cl− dependence. Nat. Neurosci. 3, 771–779 (2000).
    OpenUrlCrossRefPubMed
  37. ↵
    1. P. Liu,
    2. B. Chen,
    3. Z. W. Wang
    , SLO-2 potassium channel is an important regulator of neurotransmitter release in Caenorhabditis elegans. Nat. Commun. 5, 5155 (2014).
    OpenUrlCrossRefPubMed
  38. ↵
    1. A. Wei et al.
    , Efficient isolation of targeted Caenorhabditis elegans deletion strains using highly thermostable restriction endonucleases and PCR. Nucleic Acids Res. 30, e110 (2002).
    OpenUrlCrossRefPubMed
  39. ↵
    1. F. Goubaeva et al.
    , Stimulation of cellular signaling and G protein subunit dissociation by G protein betagamma subunit-binding peptides. J. Biol. Chem. 278, 19634–19641 (2003).
    OpenUrlAbstract/FREE Full Text
  40. ↵
    1. D. M. Lehmann,
    2. A. M. Seneviratne,
    3. A. V. Smrcka
    , Small molecule disruption of G protein beta gamma subunit signaling inhibits neutrophil chemotaxis and inflammation. Mol. Pharmacol. 73, 410–418 (2008).
    OpenUrlAbstract/FREE Full Text
  41. ↵
    1. K. Ukhanov,
    2. D. Brunert,
    3. E. A. Corey,
    4. B. W. Ache
    , Phosphoinositide 3-kinase-dependent antagonism in mammalian olfactory receptor neurons. J. Neurosci. 31, 273–280 (2011).
    OpenUrlAbstract/FREE Full Text
  42. ↵
    1. A. L. A. Nichols,
    2. T. Eichler,
    3. R. Latham,
    4. M. Zimmer
    , A global brain state underlies C. elegans sleep behavior. Science 356, eaam6851 (2017).
    OpenUrlAbstract/FREE Full Text
  43. ↵
    1. M. Turek,
    2. I. Lewandrowski,
    3. H. Bringmann
    , An AP2 transcription factor is required for a sleep-active neuron to induce sleep-like quiescence in C. elegans. Curr. Biol. 23, 2215–2223 (2013).
    OpenUrlCrossRefPubMed
  44. ↵
    1. W. Steuer Costa et al.
    , A GABAergic and peptidergic sleep neuron as a locomotion stop neuron with compartmentalized Ca2+ dynamics. Nat. Commun. 10, 4095 (2019).
    OpenUrlCrossRefPubMed
  45. ↵
    1. E. Maluck et al.
    , A wake-active locomotion circuit depolarizes a sleep-active neuron to switch on sleep. PLoS Biol. 18, e3000361 (2020).
    OpenUrlCrossRef
  46. ↵
    1. S. Choi,
    2. M. Chatzigeorgiou,
    3. K. P. Taylor,
    4. W. R. Schafer,
    5. J. M. Kaplan
    , Analysis of NPR-1 reveals a circuit mechanism for behavioral quiescence in C. elegans. Neuron 78, 869–880 (2013).
    OpenUrlCrossRefPubMed
  47. ↵
    1. D. L. Chase,
    2. M. R. Koelle
    , Biogenic amine neurotransmitters in C. elegans. WormBook, 1–15 (2007).
  48. ↵
    1. P. Bauknecht,
    2. G. Jékely
    , Ancient coexistence of norepinephrine, tyramine, and octopamine signaling in bilaterians. BMC Biol. 15, 6 (2017).
    OpenUrlCrossRef
  49. ↵
    1. C. Singh,
    2. G. Oikonomou,
    3. D. A. Prober
    , Norepinephrine is required to promote wakefulness and for hypocretin-induced arousal in zebrafish. eLife 4, e07000 (2015).
    OpenUrlCrossRefPubMed
  50. ↵
    1. C. W. Berridge,
    2. B. E. Schmeichel,
    3. R. A. España
    , Noradrenergic modulation of wakefulness/arousal. Sleep Med. Rev. 16, 187–197 (2012).
    OpenUrlCrossRefPubMed
  51. ↵
    1. M. R. Whorton,
    2. R. MacKinnon
    , X-ray structure of the mammalian GIRK2-βγ G-protein complex. Nature 498, 190–197 (2013).
    OpenUrlCrossRefPubMed
  52. ↵
    1. Y. Shen,
    2. M. A. Rampino,
    3. R. C. Carroll,
    4. S. Nawy
    , G-protein-mediated inhibition of the Trp channel TRPM1 requires the Gβγ dimer. Proc. Natl. Acad. Sci. U.S.A. 109, 8752–8757 (2012).
    OpenUrlAbstract/FREE Full Text
  53. ↵
    1. O. Alkhatib et al.
    , Promiscuous G-protein-coupled receptor inhibition of transient receptor potential melastatin 3 ion channels by Gβγ subunits. J. Neurosci. 39, 7840–7852 (2019).
    OpenUrlAbstract/FREE Full Text
  54. ↵
    1. J. S. Del Rosario et al.
    , Gi-coupled receptor activation potentiates Piezo2 currents via Gβγ. EMBO Rep. 21, e49124 (2020).
    OpenUrl
  55. ↵
    1. K. P. Currie
    , G protein modulation of CaV2 voltage-gated calcium channels. Channels (Austin) 4, 497–509 (2010).
    OpenUrlCrossRefPubMed
  56. ↵
    1. G. Krapivinsky,
    2. L. Krapivinsky,
    3. K. Wickman,
    4. D. E. Clapham
    , G beta gamma binds directly to the G protein-gated K+ channel, IKACh. J. Biol. Chem. 270, 29059–29062 (1995).
    OpenUrlAbstract/FREE Full Text
  57. ↵
    1. W. Wang,
    2. M. R. Whorton,
    3. R. MacKinnon
    , Quantitative analysis of mammalian GIRK2 channel regulation by G proteins, the signaling lipid PIP2 and Na+ in a reconstituted system. eLife 3, e03671 (2014).
    OpenUrlCrossRefPubMed
  58. ↵
    1. C. Lüscher,
    2. P. A. Slesinger
    , Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nat. Rev. Neurosci. 11, 301–315 (2010).
    OpenUrlCrossRefPubMed
  59. ↵
    1. W. Zhang et al.
    , Prenatal hypoxia inhibited propionate-evoked BK channels of mesenteric artery smooth muscle cells in offspring. J. Cell. Mol. Med. 24, 3192–3202 (2020).
    OpenUrl
  60. ↵
    1. A. G. Davies et al.
    , A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell 115, 655–666 (2003).
    OpenUrlCrossRefPubMed
  61. ↵
    1. J. E. Hewitt et al.
    , Muscle strength deficiency and mitochondrial dysfunction in a muscular dystrophy model of Caenorhabditis elegans and its functional response to drugs. Dis. Model. Mech. 11, dmm036137 (2018).
    OpenUrlAbstract/FREE Full Text
  62. ↵
    1. M. Chahbouni et al.
    , Melatonin treatment normalizes plasma pro-inflammatory cytokines and nitrosative/oxidative stress in patients suffering from Duchenne muscular dystrophy. J. Pineal Res. 48, 282–289 (2010).
    OpenUrlCrossRefPubMed
  63. ↵
    1. C. Bessou,
    2. J. B. Giugia,
    3. C. J. Franks,
    4. L. Holden-Dye,
    5. L. Ségalat
    , Mutations in the Caenorhabditis elegans dystrophin-like gene dys-1 lead to hyperactivity and suggest a link with cholinergic transmission. Neurogenetics 2, 61–72 (1998).
    OpenUrlCrossRefPubMed
  64. ↵
    1. H. Kim et al.
    , The dystrophin complex controls bk channel localization and muscle activity in Caenorhabditis elegans. PLoS Genet. 5, e1000780 (2009).
    OpenUrlCrossRefPubMed
  65. ↵
    1. K. H. Oh et al.
    , Presynaptic BK channel localization is dependent on the hierarchical organization of alpha-catulin and dystrobrevin and fine-tuned by CaV2 calcium channels. BMC Neurosci. 16, 26 (2015).
    OpenUrl
  66. ↵
    1. F. Sancar et al.
    , The dystrophin-associated protein complex maintains muscle excitability by regulating Ca(2+)-dependent K(+) (BK) channel localization. J. Biol. Chem. 286, 33501–33510 (2011).
    OpenUrlAbstract/FREE Full Text
  67. ↵
    1. Q. Liu et al.
    , Presynaptic ryanodine receptors are required for normal quantal size at the Caenorhabditis elegans neuromuscular junction. J. Neurosci. 25, 6745–6754 (2005).
    OpenUrlAbstract/FREE Full Text

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

Subscribers, for more details, please visit our Subscriptions FAQ.

Please click here to log into the PNAS submission website.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Melatonin promotes sleep by activating the BK channel in C. elegans
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Melatonin promotes sleep by activating the BK channel in C. elegans
Longgang Niu, Yan Li, Pengyu Zong, Ping Liu, Yuan Shui, Bojun Chen, Zhao-Wen Wang
Proceedings of the National Academy of Sciences Oct 2020, 117 (40) 25128-25137; DOI: 10.1073/pnas.2010928117

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Melatonin promotes sleep by activating the BK channel in C. elegans
Longgang Niu, Yan Li, Pengyu Zong, Ping Liu, Yuan Shui, Bojun Chen, Zhao-Wen Wang
Proceedings of the National Academy of Sciences Oct 2020, 117 (40) 25128-25137; DOI: 10.1073/pnas.2010928117
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 117 (40)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Biological Sciences
  • Neuroscience

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Materials and Methods
    • Data Availability.
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Surgeons hands during surgery
Inner Workings: Advances in infectious disease treatment promise to expand the pool of donor organs
Despite myriad challenges, clinicians see room for progress.
Image credit: Shutterstock/David Tadevosian.
Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Double helix
Journal Club: Noncoding DNA shown to underlie function, cause limb malformations
Using CRISPR, researchers showed that a region some used to label “junk DNA” has a major role in a rare genetic disorder.
Image credit: Nathan Devery.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Birds nestling on tree branches
Parent–offspring conflict in songbird fledging
Some songbird parents might improve their own fitness by manipulating their offspring into leaving the nest early, at the cost of fledgling survival, a study finds.
Image credit: Gil Eckrich (photographer).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490