Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Neutral evolution of human enamel–dentine junction morphology

View ORCID ProfileTesla A. Monson, Diego Fecker, and Marc Scherrer
PNAS October 20, 2020 117 (42) 26183-26189; first published October 5, 2020; https://doi.org/10.1073/pnas.2008037117
Tesla A. Monson
aDepartment of Anthropology, Western Washington University, Bellingham, WA 98225;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Tesla A. Monson
  • For correspondence: tesla.monson@wwu.edu
Diego Fecker
bDepartment of Anthropology, Universität Zürich, CH-8057 Zürich, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marc Scherrer
bDepartment of Anthropology, Universität Zürich, CH-8057 Zürich, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited by Gary T. Schwartz, Arizona State University, Tempe, AZ, and accepted by Editorial Board Member C. O. Lovejoy September 9, 2020 (received for review April 24, 2020)

This article has a Correction. Please see:

  • Correction for Monson et al., Neutral evolution of human enamel–dentine junction morphology - November 02, 2020
  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

Of the skeleton, teeth preserve well in the fossil record and have the strongest genetic signature and thus great potential for reconstructing evolutionary processes involved in human origins. The enamel–dentine junction (EDJ) is especially important, because it is more frequently preserved and somewhat decoupled from dietary function. Researchers have used the EDJ to test hypotheses of human evolution, but this trait has not yet been comprehensively studied across human populations. This study is the largest investigation of EDJ morphology to date, spanning 161 archaeological individuals from six continents. These data demonstrate that the EDJ evolves neutrally, and biomedical imaging of EDJ morphology can therefore be used as a noninvasive method to investigate ancient population movement and human genetic structure.

Abstract

Teeth have been studied for decades and continue to reveal information relevant to human evolution. Studies have shown that many traits of the outer enamel surface evolve neutrally and can be used to infer human population structure. However, many of these traits are unavailable in archaeological and fossil individuals due to processes of wear and taphonomy. Enamel–dentine junction (EDJ) morphology, the shape of the junction between the enamel and the dentine within a tooth, captures important information about tooth development and vertebrate evolution and is informative because it is subject to less wear and thus preserves more anatomy in worn or damaged specimens, particularly in mammals with relatively thick enamel like hominids. This study looks at the molar EDJ across a large sample of human populations. We assessed EDJ morphological variation in a sample of late Holocene modern humans (n = 161) from archaeological populations using μ-CT biomedical imaging and geometric morphometric analyses. Global variation in human EDJ morphology was compared to the statistical expectations of neutral evolution and “Out of Africa” dispersal modeling of trait evolution. Significant correlations between phenetic variation and neutral genetic variation indicate that EDJ morphology has evolved neutrally in humans. While EDJ morphology reflects population history, its global distribution does not follow expectations of the Out of Africa dispersal model. This study increases our knowledge of human dental variation and contributes to our understanding of dental development more broadly, with important applications to the investigation of population history and human genetic structure.

  • dentition
  • phenetic variation
  • genetic structure
  • neutral evolution
  • geometric morphometrics

Footnotes

  • ↵1To whom correspondence may be addressed. Email: tesla.monson{at}wwu.edu.
  • Author contributions: T.A.M., D.F., and M.S. performed research; T.A.M. analyzed data; and T.A.M., D.F., and M.S. wrote the paper.

  • The authors declare no competing interest.

  • This article is a PNAS Direct Submission. G.T.S. is a guest editor invited by the Editorial Board.

  • This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008037117/-/DCSupplemental.

Data Availability.

All data and code for this study are available on GitHub (https://github.com/teslamonson/EDJ) (91).

Published under the PNAS license.

View Full Text

References

  1. ↵
    1. T. Hanihara,
    2. H. Ishida
    , Metric dental variation of major human populations. Am. J. Phys. Anthropol. 128, 287–298 (2005).
    OpenUrlCrossRefPubMed
  2. ↵
    1. L. J. Hlusko,
    2. R. D. Sage,
    3. M. C. Mahaney
    , Modularity in the mammalian dentition: Mice and monkeys share a common dental genetic architecture. J. Exp. Zoolog. B Mol. Dev. Evol. 316, 21–49 (2011).
    OpenUrlPubMed
  3. ↵
    1. L. J. Hlusko,
    2. C. A. Schmitt,
    3. T. A. Monson,
    4. M. F. Brasil,
    5. M. C. Mahaney
    , The integration of quantitative genetics, paleontology, and neontology reveals genetic underpinnings of primate dental evolution. Proc. Natl. Acad. Sci. U.S.A. 113, 9262–9267 (2016).
    OpenUrlAbstract/FREE Full Text
  4. ↵
    1. A. H. Jheon,
    2. K. Seidel,
    3. B. Biehs,
    4. O. D. Klein
    , From molecules to mastication: The development and evolution of teeth. Wiley Interdiscip. Rev. Dev. Biol. 2, 165–182 (2013).
    OpenUrlCrossRefPubMed
  5. ↵
    1. J. L. Joganic et al.
    , Additive genetic variation in the craniofacial skeleton of baboons (genus Papio) and its relationship to body and cranial size. Am. J. Phys. Anthropol. 165, 269–285 (2018).
    OpenUrl
  6. ↵
    1. T. A. Monson et al.
    , Evidence of strong stabilizing effects on the evolution of boreoeutherian (Mammalia) dental proportions. Ecol. Evol. 9, 7597–7612 (2019).
    OpenUrl
  7. ↵
    1. M. S. Ponce de León et al.
    , Human bony labyrinth is an indicator of population history and dispersal from Africa. Proc. Natl. Acad. Sci. U.S.A. 115, 4128–4133 (2018).
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. L. Betti,
    2. A. Manica
    , Human variation in the shape of the birth canal is significant and geographically structured. Proc. Biol. Sci. 285, 20181807 (2018).
    OpenUrlCrossRefPubMed
  9. ↵
    1. L. Betti,
    2. F. Balloux,
    3. W. Amos,
    4. T. Hanihara,
    5. A. Manica
    , Distance from Africa, not climate, explains within-population phenotypic diversity in humans. Proc. Biol. Sci. 276, 809–814 (2009).
    OpenUrlCrossRefPubMed
  10. ↵
    1. L. Betti,
    2. N. von Cramon-Taubadel,
    3. A. Manica,
    4. S. J. Lycett
    , Global geometric morphometric analyses of the human pelvis reveal substantial neutral population history effects, even across sexes. PLoS One 8, e55909 (2013).
    OpenUrlCrossRefPubMed
  11. ↵
    1. T. Hanihara
    , Morphological variation of major human populations based on nonmetric dental traits. Am. J. Phys. Anthropol. 136, 169–182 (2008).
    OpenUrlCrossRefPubMed
  12. ↵
    1. K. Harvati,
    2. T. D. Weaver
    , Human cranial anatomy and the differential preservation of population history and climate signatures. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 288, 1225–1233 (2006).
    OpenUrlPubMed
  13. ↵
    1. H. Li,
    2. R. Durbin
    , Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).
    OpenUrlCrossRefPubMed
  14. ↵
    1. L. Pagani et al.
    , Genomic analyses inform on migration events during the peopling of Eurasia. Nature 538, 238–242 (2016).
    OpenUrl
  15. ↵
    1. F. Prugnolle,
    2. A. Manica,
    3. F. Balloux
    , Geography predicts neutral genetic diversity of human populations. Curr. Biol. 15, R159–R160 (2005).
    OpenUrlCrossRefPubMed
  16. ↵
    1. J. H. Relethford
    , Global patterns of isolation by distance based on genetic and morphological data. Hum. Biol. 76, 499–513 (2004).
    OpenUrl
  17. ↵
    1. M. Bei
    , Molecular genetics of tooth development. Curr. Opin. Genet. Dev. 19, 504–510 (2009).
    OpenUrlCrossRefPubMed
  18. ↵
    1. S. Hillson
    , Dental Anthropology, (Cambridge University Press, 1996).
  19. ↵
    1. G. Scott,
    2. J. Irish
    1. T. E. Hughes,
    2. G. C. Townsend,
    “Twin and family studies of human dental crown morphology: Genetic, epigenetic, and environmental determinants of the modern human dentition” in Anthropological Perspectives on Tooth Morphology: Genetics, Evolution, Variation, G. Scott, J. Irish, Eds. (Cambridge University Press, 2013), pp. 31–68.
  20. ↵
    1. G. C. Townsend,
    2. T. Brown
    , Heritability of permanent tooth size. Am. J. Phys. Anthropol. 49, 497–504 (1978).
    OpenUrlCrossRefPubMed
  21. ↵
    1. H. Rathmann et al.
    , Reconstructing human population history from dental phenotypes. Sci. Rep. 7, 12495 (2017).
    OpenUrlCrossRef
  22. ↵
    1. H. Rathmann,
    2. H. Reyes-Centeno
    , Testing the utility of dental morphological trait combinations for inferring human neutral genetic variation. Proc. Natl. Acad. Sci. U.S.A. 117, 10769–10777 (2020).
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. P. D. Polly
    , On morphological clocks and paleophylogeography: Towards a timescale for Sorex hybrid zones. Genetica 112-113, 339–357 (2001).
    OpenUrl
  24. ↵
    1. P. D. Polly
    , Paleophylogeography of Sorex araneus: Molar shape as a morphological marker for fossil shrews. Mammalia 68, 233–243 (2003).
    OpenUrl
  25. ↵
    1. T. A. Monson,
    2. L. J. Hlusko
    , Identification of a derived dental trait in the papionini relative to other Old World monkeys. Am. J. Phys. Anthropol. 155, 422–429 (2014).
    OpenUrl
  26. ↵
    1. T. A. Monson,
    2. L. J. Hlusko
    , The evolution of dental eruption sequence in artiodactyls. J. Mamm. Evol. 25, 15–26 (2018).
    OpenUrlCrossRef
  27. ↵
    1. T. A. Monson,
    2. L. J. Hlusko
    , Breaking the rules: Phylogeny, not life history, explains dental eruption sequence in primates. Am. J. Phys. Anthropol. 167, 217–233 (2018).
    OpenUrl
  28. ↵
    1. G. R. Scott,
    2. C. G. Turner II,
    3. G. C. Townsend,
    4. M. Martinón-Torres
    , The Anthropology of Modern Human Teeth: Dental Morphology and its Variation in Recent and Fossil Homo Sapiens, (Cambridge University Press, 2018), vol. 79.
  29. ↵
    1. B. H. Smith
    , Dental development as a measure of life history in primates. Evolution 43, 683–688 (1989).
    OpenUrlCrossRef
  30. ↵
    1. T. M. Smith
    , The Tales Teeth Tell: Development, Evolution, Behavior, (MIT Press, 2018).
  31. ↵
    1. I. Thesleff
    , From understanding tooth development to bioengineering of teeth. Eur. J. Oral Sci. 126, 67–71 (2018).
    OpenUrl
  32. ↵
    1. T. Koppe,
    2. G. Meyer,
    3. K. W. Alt
    1. P. S. Ungar,
    “Tooth form and function: Insights into adaptation through the analysis of dental microwear” in Comparative Dental Morphology, T. Koppe, G. Meyer, K. W. Alt, Eds. (Karger Publishers, 2009), vol. 13, pp. 38–43.
    OpenUrl
  33. ↵
    1. P. S. Ungar
    , Evolution’s Bite: A Story of Teeth, Diet, and Human Origins, (Princeton University Press, 2017).
  34. ↵
    1. R. M. G. Martin,
    2. J. J. Hublin,
    3. P. Gunz,
    4. M. M. Skinner
    , The morphology of the enamel-dentine junction in Neanderthal molars: Gross morphology, non-metric traits, and temporal trends. J. Hum. Evol. 103, 20–44 (2017).
    OpenUrl
  35. ↵
    1. M. M. Skinner,
    2. B. A. Wood,
    3. J. J. Hublin
    , Protostylid expression at the enamel-dentine junction and enamel surface of mandibular molars of Paranthropus robustus and Australopithecus africanus. J. Hum. Evol. 56, 76–85 (2009).
    OpenUrlCrossRefPubMed
  36. ↵
    1. A. Ortiz,
    2. S. E. Bailey,
    3. J. J. Hublin,
    4. M. M. Skinner
    , Homology, homoplasy and cusp variability at the enamel-dentine junction of hominoid molars. J. Anat. 231, 585–599 (2017).
    OpenUrl
  37. ↵
    1. T. M. Smith,
    2. A. J. Olejniczak,
    3. D. J. Reid,
    4. R. J. Ferrell,
    5. J. J. Hublin
    , Modern human molar enamel thickness and enamel-dentine junction shape. Arch. Oral Biol. 51, 974–995 (2006).
    OpenUrlCrossRefPubMed
  38. ↵
    1. G. Scott,
    2. J. Irish
    1. R. Macchiarelli,
    2. P. Bayle,
    3. L. Bondioli,
    4. A. Mazurier,
    5. C. Zanolli,
    “From outer to inner structural morphology in dental anthropology: Integration of the third dimension in the visualization and quantitative analysis of fossil remains” in Anthropological Perspectives on Tooth Morphology: Genetics, Evolution, Variation, G. Scott, J. Irish, Eds. (Cambridge University Press, 2013), pp. 250–277.
  39. ↵
    1. A. J. Olejniczak et al.
    , Morphology of the enamel-dentine junction in sections of anthropoid primate maxillary molars. J. Hum. Evol. 53, 292–301 (2007).
    OpenUrlCrossRefPubMed
  40. ↵
    1. W. Morita
    , Morphological comparison of the enamel–dentine junction and outer enamel surface of molars using a micro-computed tomography technique. J. Or. Biosci. 58, 95–99 (2016).
    OpenUrl
  41. ↵
    1. W. Morita,
    2. N. Morimoto,
    3. R. T. Kono,
    4. G. Suwa
    , Metameric variation of upper molars in hominoids and its implications for the diversification of molar morphogenesis. J. Hum. Evol. 138, 102706 (2020).
    OpenUrl
  42. ↵
    1. G. T. Schwartz,
    2. J. F. Thackeray,
    3. C. Reid,
    4. J. F. van Reenan
    , Enamel thickness and the topography of the enamel-dentine junction in South African Plio-Pleistocene hominids with special reference to the Carabelli trait. J. Hum. Evol. 35, 523–542 (1998).
    OpenUrlCrossRefPubMed
  43. ↵
    1. M. M. Skinner,
    2. P. Gunz,
    3. B. A. Wood,
    4. C. Boesch,
    5. J. J. Hublin
    , Discrimination of extant Pan species and subspecies using the enamel-dentine junction morphology of lower molars. Am. J. Phys. Anthropol. 140, 234–243 (2009).
    OpenUrlPubMed
  44. ↵
    1. J. Braga et al.
    , The enamel-dentine junction in the postcanine dentition of Australopithecus africanus: Intra-individual metameric and antimeric variation. J. Anat. 216, 62–79 (2010).
    OpenUrlCrossRefPubMed
  45. ↵
    1. W. Morita et al.
    , Patterns of morphological variation in enamel-dentin junction and outer enamel surface of human molars. J. Anat. 224, 669–680 (2014).
    OpenUrlCrossRefPubMed
  46. ↵
    1. M. Martinón-Torres et al.
    , Talonid crests expression at the enamel–dentine junction of hominin lower permanent and deciduous molars. C. R. Palevol 13, 223–234 (2014).
    OpenUrl
  47. ↵
    1. L. Pan et al.
    , Intra-individual metameric variation expressed at the enamel-dentine junction of lower post-canine dentition of South African fossil hominins and modern humans. Am. J. Phys. Anthropol. 163, 806–815 (2017).
    OpenUrl
  48. ↵
    1. M. M. Skinner et al.
    , Dental trait expression at the enamel-dentine junction of lower molars in extant and fossil hominoids. J. Hum. Evol. 54, 173–186 (2008).
    OpenUrlCrossRefPubMed
  49. ↵
    1. F. Guy,
    2. V. Lazzari,
    3. E. Gilissen,
    4. G. Thiery
    , To what extent is primate second molar enamel occlusal morphology shaped by the enamel-dentine junction? PLoS One 10, e0138802 (2015).
    OpenUrlCrossRef
  50. ↵
    1. M. M. Skinner et al.
    , Brief communication: Contributions of enamel-dentine junction shape and enamel deposition to primate molar crown complexity. Am. J. Phys. Anthropol. 142, 157–163 (2010).
    OpenUrlPubMed
  51. ↵
    1. K. R. Selig,
    2. S. López-Torres,
    3. E. J. Sargis,
    4. M. T. Silcox
    , First 3D dental topographic analysis of the enamel-dentine junction in non-primate euarchontans: Contribution of the enamel-dentine junction to molar morphology. J. Mamm. Evol. 26, 587–598 (2019).
    OpenUrl
  52. ↵
    1. J. Jernvall,
    2. I. Thesleff
    , Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech. Dev. 92, 19–29 (2000).
    OpenUrlCrossRefPubMed
  53. ↵
    1. R. T. Kono
    , Molar enamel thickness and distribution patterns in extant great apes and humans: New insights based on a 3-dimensional whole crown perspective. Anthropol. Sci. 112, 121–146 (2004).
    OpenUrlCrossRef
  54. ↵
    1. P. Lucas,
    2. P. Constantino,
    3. B. Wood,
    4. B. Lawn
    , Dental enamel as a dietary indicator in mammals. Bioessays 30, 374–385 (2008).
    OpenUrlCrossRefPubMed
  55. ↵
    1. G. A. Macho,
    2. M. E. Berner
    , Enamel thickness of human maxillary molars reconsidered. Am. J. Phys. Anthropol. 92, 189–200 (1993).
    OpenUrlCrossRefPubMed
  56. ↵
    1. L. Martin
    , Significance of enamel thickness in hominoid evolution. Nature 314, 260–263 (1985).
    OpenUrlCrossRef
  57. ↵
    1. G. T. Schwartz
    , Taxonomic and functional aspects of the patterning of enamel thickness distribution in extant large-bodied hominoids. Am. J. Phys. Anthropol. 111, 221–244 (2000).
    OpenUrlCrossRefPubMed
  58. ↵
    1. L. J. Hlusko,
    2. G. Suwa,
    3. R. T. Kono,
    4. M. C. Mahaney
    , Genetics and the evolution of primate enamel thickness: A baboon model. Am. J. Phys. Anthropol. 124, 223–233 (2004).
    OpenUrlCrossRefPubMed
  59. ↵
    1. L. J. Hlusko
    , Expression types for two cercopithecoid dental traits (interconulus and interconulid) and their variation in a modern baboon population. Int. J. Primatol. 23, 1309–1318 (2002).
    OpenUrl
  60. ↵
    1. F. Racimo,
    2. S. Sankararaman,
    3. R. Nielsen,
    4. E. Huerta-Sánchez
    , Evidence for archaic adaptive introgression in humans. Nat. Rev. Genet. 16, 359–371 (2015).
    OpenUrlCrossRefPubMed
  61. ↵
    1. J. F. Crow,
    2. M. Kimura
    , An Introduction to Population Genetics Theory, (Burgess, 1970).
  62. ↵
    1. G. Malécot
    , The Mathematics of Heredity, (Freeman, 1991).
  63. ↵
    1. N. E. Morton
    1. N. E. Morton,
    “Isolation by distance” in Genetic Structure of Populations, N. E. Morton, Ed. (University of Hawaii Press, 1973), pp. 76–77.
  64. ↵
    1. S. Ramachandran et al.
    , Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proc. Natl. Acad. Sci. U.S.A. 102, 15942–15947 (2005).
    OpenUrlAbstract/FREE Full Text
  65. ↵
    1. C. B. Stringer,
    2. P. Andrews
    , Genetic and fossil evidence for the origin of modern humans. Science 239, 1263–1268 (1988).
    OpenUrlAbstract/FREE Full Text
  66. ↵
    1. L. Excoffier,
    2. M. Foll,
    3. R. J. Petit
    , Genetic consequences of range expansions. Annu. Rev. Ecol. Evol. Syst. 40, 481–501 (2009).
    OpenUrlCrossRef
  67. ↵
    1. K. M. Ibrahim,
    2. R. A. Nichols,
    3. G. M. Hewitt
    , Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity 77, 282–291 (1996).
    OpenUrlCrossRef
  68. ↵
    1. M. Slatkin,
    2. L. Excoffier
    , Serial founder effects during range expansion: A spatial analog of genetic drift. Genetics 191, 171–181 (2012).
    OpenUrlAbstract/FREE Full Text
  69. ↵
    1. R. Caumul,
    2. P. D. Polly
    , Phylogenetic and environmental components of morphological variation: Skull, mandible, and molar shape in marmots (Marmota, Rodentia). Evolution 59, 2460–2472 (2005).
    OpenUrlCrossRefPubMed
  70. ↵
    1. G. K. Creighton
    , Static allometry of mammalian teeth and the correlation of tooth size and body size in contemporary mammals. J. Zool. 191, 435–443 (1980).
    OpenUrl
  71. ↵
    1. P. D. Gingerich
    , Correlation of tooth size and body size in living hominoid primates, with a note on relative brain size in Aegyptopithecus and Proconsul. Am. J. Phys. Anthropol. 47, 395–398 (1977).
    OpenUrlCrossRefPubMed
  72. ↵
    1. P. D. Gingerich,
    2. M. J. Schoeninger
    , Patterns of tooth size variability in the dentition of primates. Am. J. Phys. Anthropol. 51, 457–465 (1979).
    OpenUrlCrossRefPubMed
  73. ↵
    1. P. D. Gingerich,
    2. B. H. Smith,
    3. K. Rosenberg
    , Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. Am. J. Phys. Anthropol. 58, 81–100 (1982).
    OpenUrlCrossRefPubMed
  74. ↵
    1. S. Goldstein,
    2. D. Post,
    3. D. Melnick
    , An analysis of cercopithecoid odontometrics. I. The scaling of the maxillary dentition. Am. J. Phys. Anthropol. 49, 517–532 (1978).
    OpenUrlPubMed
  75. ↵
    1. S. J. Gould
    , On the scaling of tooth size in mammals. Am. Zool. 15, 351–362 (1975).
    OpenUrl
  76. ↵
    1. L. J. Hlusko,
    2. L. R. Lease,
    3. M. C. Mahaney
    , Evolution of genetically correlated traits: Tooth size and body size in baboons. Am. J. Phys. Anthropol. 131, 420–427 (2006).
    OpenUrlCrossRefPubMed
  77. ↵
    1. M. Haber et al.
    , Chad genetic diversity reveals an African history marked by multiple Holocene Eurasian migrations. Am. J. Hum. Genet. 99, 1316–1324 (2016).
    OpenUrlCrossRef
  78. ↵
    1. M. F. Hammer,
    2. A. E. Woerner,
    3. F. L. Mendez,
    4. J. C. Watkins,
    5. J. D. Wall
    , Genetic evidence for archaic admixture in Africa. Proc. Natl. Acad. Sci. U.S.A. 108, 15123–15128 (2011).
    OpenUrlAbstract/FREE Full Text
  79. ↵
    1. M. G. Llorente et al.
    , Ancient Ethiopian genome reveals extensive Eurasian admixture throughout the African continent. Science 350, 820–822 (2015).
    OpenUrlAbstract/FREE Full Text
  80. ↵
    1. M. Slatkin,
    2. F. Racimo
    , Ancient DNA and human history. Proc. Natl. Acad. Sci. U.S.A. 113, 6380–6387 (2016).
    OpenUrlAbstract/FREE Full Text
  81. ↵
    1. H. S. Groucutt,
    2. M. D. Petraglia
    , The prehistory of the Arabian peninsula: Deserts, dispersals, and demography. Evol. Anthropol. 21, 113–125 (2012).
    OpenUrlCrossRefPubMed
  82. ↵
    1. P. Gunz et al.
    , Early modern human diversity suggests subdivided population structure and a complex out-of-Africa scenario. Proc. Natl. Acad. Sci. U.S.A. 106, 6094–6098 (2009).
    OpenUrlAbstract/FREE Full Text
  83. ↵
    1. R. H. Biggerstaff
    , Cusp size sexual dimorphism, and the heritability of maxillary molar cusp size in twins. J. Dent. Res. 55, 189–195 (1976).
    OpenUrlCrossRefPubMed
  84. ↵
    1. J. P. Hunter,
    2. D. Guatelli-Steinberg,
    3. T. C. Weston,
    4. R. Durner,
    5. T. K. Betsinger
    , Model of tooth morphogenesis predicts Carabelli cusp expression, size, and symmetry in humans. PLoS One 5, e11844 (2010).
    OpenUrlCrossRefPubMed
  85. ↵
    1. C. Koh et al.
    , Genetic integration of molar cusp size variation in baboons. Am. J. Phys. Anthropol. 142, 246–260 (2010).
    OpenUrlPubMed
  86. ↵
    1. S. Kondo,
    2. G. C. Townsend
    , Associations between Carabelli trait and cusp areas in human permanent maxillary first molars. Am. J. Phys. Anthropol. 129, 196–203 (2006).
    OpenUrlCrossRefPubMed
  87. ↵
    1. W. Jungers
    1. M. H. Wolpoff,
    “Tooth size–body size scaling in a human population” in Size and Scaling in Primate Biology, W. Jungers, Ed. (Springer, 1985), pp. 273–318.
  88. ↵
    1. P. M. Butler
    , Relative growth within the human first upper permanent molar during the prenatal period. Arch. Oral Biol. 12, 983–992 (1967).
    OpenUrlCrossRefPubMed
  89. ↵
    1. C. P. E. Zollikofer,
    2. M. S. P. de León
    , Tools for rapid prototyping in the biosciences. IEEE Comput. Graph. Appl. 15, 48–55 (1995).
    OpenUrl
  90. ↵
    1. R Core Team
    , R: A language and environment for statistical computing, (R Foundation for Statistical Computing, Vienna, 2016).
  91. ↵
    1. T. A. Monson,
    2. D. Fecker,
    3. M. Scherrer
    , EDJ. GitHub. https://github.com/teslamonson/EDJ. Deposited 30 July 2020.
  92. ↵
    1. D. Adams,
    2. M. Collyer,
    3. A. Kaliontzopoulou
    , Geomorph: Software for geometric morphometric analyses. R package version 3.1.1, (R Foundation for Statistical Computing, Vienna, 2019).
  93. ↵
    1. G. Zheng,
    2. S. Li,
    3. G. Szekely
    1. S. Schlager,
    “Morpho and Rvcg—Shape analysis in R” in Statistical Shape and Deformation Analysis, G. Zheng, S. Li, G. Szekely, Eds. (Academic Press, 2017), pp. 217–256.
  94. ↵
    1. H. Wickham
    , ggplot2: Elegant Graphics for Data Analysis, (Springer-Verlag, 2016).

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

Subscribers, for more details, please visit our Subscriptions FAQ.

Please click here to log into the PNAS submission website.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Neutral evolution of human enamel–dentine junction morphology
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Neutral evolution of human enamel–dentine junction morphology
Tesla A. Monson, Diego Fecker, Marc Scherrer
Proceedings of the National Academy of Sciences Oct 2020, 117 (42) 26183-26189; DOI: 10.1073/pnas.2008037117

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Neutral evolution of human enamel–dentine junction morphology
Tesla A. Monson, Diego Fecker, Marc Scherrer
Proceedings of the National Academy of Sciences Oct 2020, 117 (42) 26183-26189; DOI: 10.1073/pnas.2008037117
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 117 (42)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Biological Sciences
  • Anthropology

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Materials and Methods
    • Data Availability.
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Surgeons hands during surgery
Inner Workings: Advances in infectious disease treatment promise to expand the pool of donor organs
Despite myriad challenges, clinicians see room for progress.
Image credit: Shutterstock/David Tadevosian.
Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Double helix
Journal Club: Noncoding DNA shown to underlie function, cause limb malformations
Using CRISPR, researchers showed that a region some used to label “junk DNA” has a major role in a rare genetic disorder.
Image credit: Nathan Devery.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Multi-color molecular model
Enzymatic breakdown of PET plastic
A study demonstrates how two enzymes—MHETase and PETase—work synergistically to depolymerize the plastic pollutant PET.
Image credit: Aaron McGeehan (artist).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490