New Research In
Physical Sciences
Social Sciences
Featured Portals
Articles by Topic
Biological Sciences
Featured Portals
Articles by Topic
- Agricultural Sciences
- Anthropology
- Applied Biological Sciences
- Biochemistry
- Biophysics and Computational Biology
- Cell Biology
- Developmental Biology
- Ecology
- Environmental Sciences
- Evolution
- Genetics
- Immunology and Inflammation
- Medical Sciences
- Microbiology
- Neuroscience
- Pharmacology
- Physiology
- Plant Biology
- Population Biology
- Psychological and Cognitive Sciences
- Sustainability Science
- Systems Biology
Normal levels of ribosome-associated chaperones cure two groups of [PSI+] prion variants
Contributed by Reed B. Wickner, September 9, 2020 (sent for review August 11, 2020; reviewed by Chih-Yen King and Susan Liebman)

Significance
[PSI+] is a prion (infectious protein) form of the yeast Sup35 protein, propagating as an amyloid filamentous polymer. We find that each of the ribosome-associated chaperones—Ssb1/2p, Zuo1p, and Ssz1p—at their normal expression levels, blocks [PSI+] generation and the propagation of most new [PSI+] prion variants generated in their absence. The curing mechanism involves the functional triad of ribosome-associated chaperones. Our results suggest that cells do not want to have a prion: Cells reduce the chance of a prion emerging at the polypeptide level, and usually immediately cure those prions that do arise perhaps by limiting fiber growth.
Abstract
The yeast prion [PSI+] is a self-propagating amyloid of the translation termination factor, Sup35p. For known pathogenic prions, such as [PSI+], a single protein can form an array of different amyloid structures (prion variants) each stably inherited and with differing biological properties. The ribosome-associated chaperones, Ssb1/2p (Hsp70s), and RAC (Zuo1p (Hsp40) and Ssz1p (Hsp70)), enhance de novo protein folding by protecting nascent polypeptide chains from misfolding and maintain translational fidelity by involvement in translation termination. Ssb1/2p and RAC chaperones were previously found to inhibit [PSI+] prion generation. We find that most [PSI+] variants arising in the absence of each chaperone were cured by restoring normal levels of that protein. [PSI+] variants hypersensitive to Ssb1/2p have distinguishable biological properties from those hypersensitive to Zuo1p or Ssz1p. The elevated [PSI+] generation frequency in each deletion strain is not due to an altered [PIN+], another prion that primes [PSI+] generation. [PSI+] prion generation/propagation may be inhibited by Ssb1/2/RAC chaperones by ensuring proper folding of nascent Sup35p, thus preventing its joining amyloid fibers. Alternatively, the effect of RAC/Ssb mutations on translation termination and the absence of an effect on the [URE3] prion suggest an effect on the mature Sup35p such that it does not readily join amyloid filaments. Ssz1p is degraded in zuo1Δ [psi-] cells, but not if the cells carry any of several [PSI+] variants. Our results imply that prions arise more frequently than had been thought but the cell has evolved exquisite antiprion systems that rapidly eliminate most variants.
Footnotes
- ↵1To whom correspondence may be addressed. Email: wickner{at}helix.nih.gov.
Author contributions: M.S. and R.B.W. designed research; M.S. performed research; M.S. contributed new reagents/analytic tools; M.S. and R.B.W. analyzed data; and M.S. and R.B.W. wrote the paper.
Reviewers: C-Y.K., Institute of Molecular Biology, Academia Sinica; and S.L., University of Nevada.
The authors declare no competing interest.
This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016954117/-/DCSupplemental.
Data Availability.
All study data are included in the main text and SI Appendix.
Published under the PNAS license.
References
- ↵
- R. B. Wickner
- ↵
- ↵
- ↵
- ↵
- C.-Y. King et al.
- ↵
- S. V. Paushkin,
- V. V. Kushnirov,
- V. N. Smirnov,
- M. D. Ter-Avanesyan
- ↵
- ↵
- G. Jung,
- G. Jones,
- R. D. Wegrzyn,
- D. C. Masison
- ↵
- ↵
- ↵
- F. Lacroute
- ↵
- D. C. Masison,
- M.-L. Maddelein,
- R. B. Wickner
- ↵
- H. K. Edskes,
- V. T. Gray,
- R. B. Wickner
- ↵
- K. L. Taylor,
- N. Cheng,
- R. W. Williams,
- A. C. Steven,
- R. B. Wickner
- ↵
- A. Brachmann,
- U. Baxa,
- R. B. Wickner
- ↵
- ↵
- R. P. McGlinchey,
- D. Kryndushkin,
- R. B. Wickner
- ↵
- T. Nakayashiki,
- C. P. Kurtzman,
- H. K. Edskes,
- R. B. Wickner
- ↵
- A. C. Kelly,
- F. P. Shewmaker,
- D. Kryndushkin,
- R. B. Wickner
- ↵
- R. B. Wickner,
- M. Son,
- H. K. Edskes
- ↵
- R. B. Wickner et al.
- ↵
- ↵
- Y. O. Chernoff,
- S. L. Lindquist,
- B. Ono,
- S. G. Inge-Vechtomov,
- S. W. Liebman
- ↵
- H. Moriyama,
- H. K. Edskes,
- R. B. Wickner
- ↵
- G. C. Hung,
- D. C. Masison
- ↵
- A. Gorkovskiy,
- M. Reidy,
- D. C. Masison,
- R. B. Wickner
- ↵
- D. S. Kryndushkin,
- F. Shewmaker,
- R. B. Wickner
- ↵
- V. Kanneganti,
- R. Kama,
- J. E. Gerst
- ↵
- R. B. Wickner,
- E. Bezsonov,
- D. A. Bateman
- ↵
- R. B. Wickner,
- A. C. Kelly,
- E. E. Bezsonov,
- H. K. Edskes
- ↵
- M. Son,
- R. B. Wickner
- ↵
- ↵
- C. Pfund et al.
- ↵
- W. Yan et al.
- ↵
- T. C. Hallstrom,
- D. J. Katzmann,
- R. J. Torres,
- W. J. Sharp,
- W. S. Moye-Rowley
- ↵
- M. Gautschi et al.
- ↵
- H. Hundley et al.
- ↵
- M. Gautschi,
- A. Mun,
- S. Ross,
- S. Rospert
- ↵
- ↵
- F. U. Hartl,
- M. Hayer-Hartl
- ↵
- ↵
- E. Deuerling,
- M. Gamerdinger,
- S. G. Kreft
- ↵
- Y. O. Chernoff,
- G. P. Newnam,
- J. Kumar,
- K. Allen,
- A. D. Zink
- ↵
- ↵
- ↵
- ↵
- ↵
- I. L. Derkatch,
- M. E. Bradley,
- P. Zhou,
- Y. O. Chernoff,
- S. W. Liebman
- ↵
- ↵
- ↵
- ↵
- M. E. Bradley,
- H. K. Edskes,
- J. Y. Hong,
- R. B. Wickner,
- S. W. Liebman
- ↵
- M. F. Tuite,
- C. R. Mundy,
- B. S. Cox
- ↵
- ↵
- ↵
- G. Jung,
- G. Jones,
- D. C. Masison
- ↵
- ↵
- ↵
- T. Higurashi,
- J. K. Hines,
- C. Sahi,
- R. Aron,
- E. A. Craig
- ↵
- ↵
- S. M. Doel,
- S. J. McCready,
- C. R. Nierras,
- B. S. Cox
- ↵
- P. A. Kirkland,
- M. Reidy,
- D. C. Masison
- ↵
- ↵
- K. D. Allen et al.
- ↵
- M. Rakwalska,
- S. Rospert
- ↵
- V. V. Kushnirov,
- N. V. Kochneva-Pervukhova,
- M. B. Chechenova,
- N. S. Frolova,
- M. D. Ter-Avanesyan
- ↵
- D. L. Lancaster,
- C. M. Dobson,
- R. A. Rachubinski
- ↵
- I. L. Derkatch,
- Y. O. Chernoff,
- V. V. Kushnirov,
- S. G. Inge-Vechtomov,
- S. W. Liebman
- ↵
- ↵
- A. A. Dergalev,
- A. I. Alexandrov,
- R. I. Ivannikov,
- M. D. Ter-Avanesyan,
- V. V. Kushnirov
- ↵
- F. Shewmaker,
- R. B. Wickner,
- R. Tycko
- ↵
- ↵
- A. Gorkovskiy,
- K. R. Thurber,
- R. Tycko,
- R. B. Wickner
- ↵
- ↵
- R. B. Wickner et al.
- ↵
- Y. Zhang et al.
- ↵
- J. Shorter,
- S. Lindquist
- ↵
- E. A. Winzeler et al.
- ↵
- C. Guthrie,
- G. R. Fink
- F. Sherman,
Log in using your username and password
Log in through your institution
Purchase access
Subscribers, for more details, please visit our Subscriptions FAQ.
Please click here to log into the PNAS submission website.
Citation Manager Formats
Sign up for Article Alerts
Article Classifications
- Biological Sciences
- Genetics