Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Normal levels of ribosome-associated chaperones cure two groups of [PSI+] prion variants

Moonil Son and View ORCID ProfileReed B. Wickner
PNAS October 20, 2020 117 (42) 26298-26306; first published October 5, 2020; https://doi.org/10.1073/pnas.2016954117
Moonil Son
aLaboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Reed B. Wickner
aLaboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Reed B. Wickner
  • For correspondence: wickner@helix.nih.gov
  1. Contributed by Reed B. Wickner, September 9, 2020 (sent for review August 11, 2020; reviewed by Chih-Yen King and Susan Liebman)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

[PSI+] is a prion (infectious protein) form of the yeast Sup35 protein, propagating as an amyloid filamentous polymer. We find that each of the ribosome-associated chaperones—Ssb1/2p, Zuo1p, and Ssz1p—at their normal expression levels, blocks [PSI+] generation and the propagation of most new [PSI+] prion variants generated in their absence. The curing mechanism involves the functional triad of ribosome-associated chaperones. Our results suggest that cells do not want to have a prion: Cells reduce the chance of a prion emerging at the polypeptide level, and usually immediately cure those prions that do arise perhaps by limiting fiber growth.

Abstract

The yeast prion [PSI+] is a self-propagating amyloid of the translation termination factor, Sup35p. For known pathogenic prions, such as [PSI+], a single protein can form an array of different amyloid structures (prion variants) each stably inherited and with differing biological properties. The ribosome-associated chaperones, Ssb1/2p (Hsp70s), and RAC (Zuo1p (Hsp40) and Ssz1p (Hsp70)), enhance de novo protein folding by protecting nascent polypeptide chains from misfolding and maintain translational fidelity by involvement in translation termination. Ssb1/2p and RAC chaperones were previously found to inhibit [PSI+] prion generation. We find that most [PSI+] variants arising in the absence of each chaperone were cured by restoring normal levels of that protein. [PSI+] variants hypersensitive to Ssb1/2p have distinguishable biological properties from those hypersensitive to Zuo1p or Ssz1p. The elevated [PSI+] generation frequency in each deletion strain is not due to an altered [PIN+], another prion that primes [PSI+] generation. [PSI+] prion generation/propagation may be inhibited by Ssb1/2/RAC chaperones by ensuring proper folding of nascent Sup35p, thus preventing its joining amyloid fibers. Alternatively, the effect of RAC/Ssb mutations on translation termination and the absence of an effect on the [URE3] prion suggest an effect on the mature Sup35p such that it does not readily join amyloid filaments. Ssz1p is degraded in zuo1Δ [psi-] cells, but not if the cells carry any of several [PSI+] variants. Our results imply that prions arise more frequently than had been thought but the cell has evolved exquisite antiprion systems that rapidly eliminate most variants.

  • prion
  • antiprion system
  • [PSI+]
  • Ssb
  • ribosome-associated complex

Footnotes

  • ↵1To whom correspondence may be addressed. Email: wickner{at}helix.nih.gov.
  • Author contributions: M.S. and R.B.W. designed research; M.S. performed research; M.S. contributed new reagents/analytic tools; M.S. and R.B.W. analyzed data; and M.S. and R.B.W. wrote the paper.

  • Reviewers: C-Y.K., Institute of Molecular Biology, Academia Sinica; and S.L., University of Nevada.

  • The authors declare no competing interest.

  • This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016954117/-/DCSupplemental.

Data Availability.

All study data are included in the main text and SI Appendix.

Published under the PNAS license.

View Full Text

References

  1. ↵
    1. R. B. Wickner
    , [URE3] as an altered URE2 protein: Evidence for a prion analog in Saccharomyces cerevisiae. Science 264, 566–569 (1994).
    OpenUrlAbstract/FREE Full Text
  2. ↵
    1. I. Stansfield et al.
    , The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J. 14, 4365–4373 (1995).
    OpenUrlPubMed
  3. ↵
    1. L. Frolova et al.
    , A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor. Nature 372, 701–703 (1994).
    OpenUrlCrossRefPubMed
  4. ↵
    1. B. S. Cox
    , PSI, a cytoplasmic suppressor of super-suppressor in yeast. Heredity 20, 505–521 (1965).
    OpenUrlCrossRef
  5. ↵
    1. C.-Y. King et al.
    , Prion-inducing domain 2-114 of yeast Sup35 protein transforms in vitro into amyloid-like filaments. Proc. Natl. Acad. Sci. U.S.A. 94, 6618–6622 (1997).
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. S. V. Paushkin,
    2. V. V. Kushnirov,
    3. V. N. Smirnov,
    4. M. D. Ter-Avanesyan
    , In vitro propagation of the prion-like state of yeast Sup35 protein. Science 277, 381–383 (1997).
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. J. R. Glover et al.
    , Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell 89, 811–819 (1997).
    OpenUrlCrossRefPubMed
  8. ↵
    1. G. Jung,
    2. G. Jones,
    3. R. D. Wegrzyn,
    4. D. C. Masison
    , A role for cytosolic hsp70 in yeast [PSI(+)] prion propagation and [PSI(+)] as a cellular stress. Genetics 156, 559–570 (2000).
    OpenUrlAbstract/FREE Full Text
  9. ↵
    1. C.-Y. King,
    2. R. Diaz-Avalos
    , Protein-only transmission of three yeast prion strains. Nature 428, 319–323 (2004).
    OpenUrlCrossRefPubMed
  10. ↵
    1. M. Tanaka,
    2. P. Chien,
    3. N. Naber,
    4. R. Cooke,
    5. J. S. Weissman
    , Conformational variations in an infectious protein determine prion strain differences. Nature 428, 323–328 (2004).
    OpenUrlCrossRefPubMed
  11. ↵
    1. F. Lacroute
    , Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast. J. Bacteriol. 106, 519–522 (1971).
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. D. C. Masison,
    2. M.-L. Maddelein,
    3. R. B. Wickner
    , The prion model for [URE3] of yeast: Spontaneous generation and requirements for propagation. Proc. Natl. Acad. Sci. U.S.A. 94, 12503–12508 (1997).
    OpenUrlAbstract/FREE Full Text
  13. ↵
    1. H. K. Edskes,
    2. V. T. Gray,
    3. R. B. Wickner
    , The [URE3] prion is an aggregated form of Ure2p that can be cured by overexpression of Ure2p fragments. Proc. Natl. Acad. Sci. U.S.A. 96, 1498–1503 (1999).
    OpenUrlAbstract/FREE Full Text
  14. ↵
    1. K. L. Taylor,
    2. N. Cheng,
    3. R. W. Williams,
    4. A. C. Steven,
    5. R. B. Wickner
    , Prion domain initiation of amyloid formation in vitro from native Ure2p. Science 283, 1339–1343 (1999).
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. A. Brachmann,
    2. U. Baxa,
    3. R. B. Wickner
    , Prion generation in vitro: Amyloid of Ure2p is infectious. EMBO J. 24, 3082–3092 (2005).
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. T. G. Cooper
    , Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: Connecting the dots. FEMS Microbiol. Rev. 26, 223–238 (2002).
    OpenUrlCrossRefPubMed
  17. ↵
    1. R. P. McGlinchey,
    2. D. Kryndushkin,
    3. R. B. Wickner
    , Suicidal [PSI+] is a lethal yeast prion. Proc. Natl. Acad. Sci. U.S.A. 108, 5337–5341 (2011).
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. T. Nakayashiki,
    2. C. P. Kurtzman,
    3. H. K. Edskes,
    4. R. B. Wickner
    , Yeast prions [URE3] and [PSI+] are diseases. Proc. Natl. Acad. Sci. U.S.A. 102, 10575–10580 (2005).
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. A. C. Kelly,
    2. F. P. Shewmaker,
    3. D. Kryndushkin,
    4. R. B. Wickner
    , Sex, prions, and plasmids in yeast. Proc. Natl. Acad. Sci. U.S.A. 109, E2683–E2690 (2012).
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. R. B. Wickner,
    2. M. Son,
    3. H. K. Edskes
    , Prion variants of yeast are numerous, mutable, and segregate on growth, affecting prion pathogenesis, transmission barriers and sensitivity to anti-prioin systems. Viruses 11, 238 (2019).
    OpenUrl
  21. ↵
    1. R. B. Wickner et al.
    , Yeast prions: Proteins templating conformation and an anti-prion system. PLoS Pathog. 11, e1004584 (2015).
    OpenUrl
  22. ↵
    1. R. B. Wickner et al.
    , Anti-prion systems in yeast and inositol polyphosphates. Biochemistry 57, 1285–1292 (2018).
    OpenUrlCrossRefPubMed
  23. ↵
    1. Y. O. Chernoff,
    2. S. L. Lindquist,
    3. B. Ono,
    4. S. G. Inge-Vechtomov,
    5. S. W. Liebman
    , Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268, 880–884 (1995).
    OpenUrlAbstract/FREE Full Text
  24. ↵
    1. H. Moriyama,
    2. H. K. Edskes,
    3. R. B. Wickner
    , [URE3] prion propagation in Saccharomyces cerevisiae: Requirement for chaperone Hsp104 and curing by overexpressed chaperone Ydj1p. Mol. Cell. Biol. 20, 8916–8922 (2000).
    OpenUrlAbstract/FREE Full Text
  25. ↵
    1. G. C. Hung,
    2. D. C. Masison
    , N-terminal domain of yeast Hsp104 chaperone is dispensable for thermotolerance and prion propagation but necessary for curing prions by Hsp104 overexpression. Genetics 173, 611–620 (2006).
    OpenUrlAbstract/FREE Full Text
  26. ↵
    1. A. Gorkovskiy,
    2. M. Reidy,
    3. D. C. Masison,
    4. R. B. Wickner
    , Hsp104 disaggregase at normal levels cures many [ PSI+] prion variants in a process promoted by Sti1p, Hsp90, and Sis1p. Proc. Natl. Acad. Sci. U.S.A. 114, E4193–E4202 (2017).
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. D. S. Kryndushkin,
    2. F. Shewmaker,
    3. R. B. Wickner
    , Curing of the [URE3] prion by Btn2p, a Batten disease-related protein. EMBO J. 27, 2725–2735 (2008).
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. V. Kanneganti,
    2. R. Kama,
    3. J. E. Gerst
    , Btn3 is a negative regulator of Btn2-mediated endosomal protein trafficking and prion curing in yeast. Mol. Biol. Cell 22, 1648–1663 (2011).
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. R. B. Wickner,
    2. E. Bezsonov,
    3. D. A. Bateman
    , Normal levels of the antiprion proteins Btn2 and Cur1 cure most newly formed [URE3] prion variants. Proc. Natl. Acad. Sci. U.S.A. 111, E2711–E2720 (2014).
    OpenUrlAbstract/FREE Full Text
  30. ↵
    1. R. B. Wickner,
    2. A. C. Kelly,
    3. E. E. Bezsonov,
    4. H. K. Edskes
    , [PSI+] prion propagation is controlled by inositol polyphosphates. Proc. Natl. Acad. Sci. U.S.A. 114, E8402–E8410 (2017).
    OpenUrlAbstract/FREE Full Text
  31. ↵
    1. M. Son,
    2. R. B. Wickner
    , Nonsense-mediated mRNA decay factors cure most [PSI+] prion variants. Proc. Natl. Acad. Sci. U.S.A. 115, E1184–E1193 (2018).
    OpenUrlAbstract/FREE Full Text
  32. ↵
    1. R. J. Nelson,
    2. T. Ziegelhoffer,
    3. C. Nicolet,
    4. M. Werner-Washburne,
    5. E. A. Craig
    , The translation machinery and 70 kd heat shock protein cooperate in protein synthesis. Cell 71, 97–105 (1992).
    OpenUrlCrossRefPubMed
  33. ↵
    1. C. Pfund et al.
    , The molecular chaperone Ssb from Saccharomyces cerevisiae is a component of the ribosome-nascent chain complex. EMBO J. 17, 3981–3989 (1998).
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. W. Yan et al.
    , Zuotin, a ribosome-associated DnaJ molecular chaperone. EMBO J. 17, 4809–4817 (1998).
    OpenUrlAbstract/FREE Full Text
  35. ↵
    1. T. C. Hallstrom,
    2. D. J. Katzmann,
    3. R. J. Torres,
    4. W. J. Sharp,
    5. W. S. Moye-Rowley
    , Regulation of transcription factor Pdr1p function by an Hsp70 protein in Saccharomyces cerevisiae. Mol. Cell. Biol. 18, 1147–1155 (1998).
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. M. Gautschi et al.
    , RAC, a stable ribosome-associated complex in yeast formed by the DnaK-DnaJ homologs Ssz1p and zuotin. Proc. Natl. Acad. Sci. U.S.A. 98, 3762–3767 (2001).
    OpenUrlAbstract/FREE Full Text
  37. ↵
    1. H. Hundley et al.
    , The in vivo function of the ribosome-associated Hsp70, Ssz1, does not require its putative peptide-binding domain. Proc. Natl. Acad. Sci. U.S.A. 99, 4203–4208 (2002).
    OpenUrlAbstract/FREE Full Text
  38. ↵
    1. M. Gautschi,
    2. A. Mun,
    3. S. Ross,
    4. S. Rospert
    , A functional chaperone triad on the yeast ribosome. Proc. Natl. Acad. Sci. U.S.A. 99, 4209–4214 (2002).
    OpenUrlAbstract/FREE Full Text
  39. ↵
    1. B. Bukau,
    2. E. Deuerling,
    3. C. Pfund,
    4. E. A. Craig
    , Getting newly synthesized proteins into shape. Cell 101, 119–122 (2000).
    OpenUrlCrossRefPubMed
  40. ↵
    1. F. U. Hartl,
    2. M. Hayer-Hartl
    , Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 295, 1852–1858 (2002).
    OpenUrlAbstract/FREE Full Text
  41. ↵
    1. Y. Zhang,
    2. I. Sinning,
    3. S. Rospert
    , Two chaperones locked in an embrace: Structure and function of the ribosome-associated complex RAC. Nat. Struct. Mol. Biol. 24, 611–619 (2017).
    OpenUrlCrossRef
  42. ↵
    1. E. Deuerling,
    2. M. Gamerdinger,
    3. S. G. Kreft
    , Chaperone interactions at the ribosome. Cold Spring Harb. Perspect. Biol. 11, a033977 (2019).
    OpenUrlAbstract/FREE Full Text
  43. ↵
    1. Y. O. Chernoff,
    2. G. P. Newnam,
    3. J. Kumar,
    4. K. Allen,
    5. A. D. Zink
    , Evidence for a protein mutator in yeast: Role of the Hsp70-related chaperone ssb in formation, stability, and toxicity of the [PSI] prion. Mol. Cell. Biol. 19, 8103–8112 (1999).
    OpenUrlAbstract/FREE Full Text
  44. ↵
    1. D. A. Kiktev,
    2. M. M. Melomed,
    3. C. D. Lu,
    4. G. P. Newnam,
    5. Y. O. Chernoff
    , Feedback control of prion formation and propagation by the ribosome-associated chaperone complex. Mol. Microbiol. 96, 621–632 (2015).
    OpenUrlCrossRefPubMed
  45. ↵
    1. A. J. Amor et al.
    , The ribosome-associated complex antagonizes prion formation in yeast. Prion 9, 144–164 (2015).
    OpenUrlCrossRefPubMed
  46. ↵
    1. Y. O. Chernoff,
    2. D. A. Kiktev
    , Dual role of ribosome-associated chaperones in prion formation and propagation. Curr. Genet. 62, 677–685 (2016).
    OpenUrlCrossRefPubMed
  47. ↵
    1. A. G. Matveenko,
    2. Y. A. Barbitoff,
    3. L. M. Jay-Garcia,
    4. Y. O. Chernoff,
    5. G. A. Zhouravleva
    , Differential effects of chaperones on yeast prions: CURrent view. Curr. Genet. 64, 317–325 (2018).
    OpenUrlCrossRefPubMed
  48. ↵
    1. I. L. Derkatch,
    2. M. E. Bradley,
    3. P. Zhou,
    4. Y. O. Chernoff,
    5. S. W. Liebman
    , Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics 147, 507–519 (1997).
    OpenUrlAbstract/FREE Full Text
  49. ↵
    1. N. Sondheimer,
    2. S. Lindquist
    , Rnq1: An epigenetic modifier of protein function in yeast. Mol. Cell 5, 163–172 (2000).
    OpenUrlCrossRefPubMed
  50. ↵
    1. I. L. Derkatch,
    2. M. E. Bradley,
    3. J. Y. Hong,
    4. S. W. Liebman
    , Prions affect the appearance of other prions: The story of [PIN(+)]. Cell 106, 171–182 (2001).
    OpenUrlCrossRefPubMed
  51. ↵
    1. X. Li,
    2. J. B. Rayman,
    3. E. R. Kandel,
    4. I. L. Derkatch
    , Functional role of Tia1/Pub1 and Sup35 prion domains: Directing protein synthesis machinery to the tubulin cytoskeleton. Mol. Cell 55, 305–318 (2014).
    OpenUrlCrossRefPubMed
  52. ↵
    1. M. E. Bradley,
    2. H. K. Edskes,
    3. J. Y. Hong,
    4. R. B. Wickner,
    5. S. W. Liebman
    , Interactions among prions and prion “strains” in yeast. Proc. Natl. Acad. Sci. U.S.A. 99 (suppl. 4), 16392–16399 (2002).
    OpenUrlAbstract/FREE Full Text
  53. ↵
    1. M. F. Tuite,
    2. C. R. Mundy,
    3. B. S. Cox
    , Agents that cause a high frequency of genetic change from [psi+] to [psi-] in Saccharomyces cerevisiae. Genetics 98, 691–711 (1981).
    OpenUrlAbstract/FREE Full Text
  54. ↵
    1. G. Jung,
    2. D. C. Masison
    , Guanidine hydrochloride inhibits Hsp104 activity in vivo: A possible explanation for its effect in curing yeast prions. Curr. Microbiol. 43, 7–10 (2001).
    OpenUrlCrossRefPubMed
  55. ↵
    1. P. C. Ferreira,
    2. F. Ness,
    3. S. R. Edwards,
    4. B. S. Cox,
    5. M. F. Tuite
    , The elimination of the yeast [PSI+] prion by guanidine hydrochloride is the result of Hsp104 inactivation. Mol. Microbiol. 40, 1357–1369 (2001).
    OpenUrlCrossRefPubMed
  56. ↵
    1. G. Jung,
    2. G. Jones,
    3. D. C. Masison
    , Amino acid residue 184 of yeast Hsp104 chaperone is critical for prion-curing by guanidine, prion propagation, and thermotolerance. Proc. Natl. Acad. Sci. U.S.A. 99, 9936–9941 (2002).
    OpenUrlAbstract/FREE Full Text
  57. ↵
    1. A. L. Manogaran,
    2. V. M. Fajardo,
    3. R. J. D. Reid,
    4. R. Rothstein,
    5. S. W. Liebman
    , Most, but not all, yeast strains in the deletion library contain the [PIN(+)] prion. Yeast 27, 159–166 (2010).
    OpenUrlCrossRefPubMed
  58. ↵
    1. A. L. Manogaran,
    2. K. T. Kirkland,
    3. S. W. Liebman
    , An engineered nonsense URA3 allele provides a versatile system to detect the presence, absence and appearance of the [PSI+] prion in Saccharomyces cerevisiae. Yeast 23, 141–147 (2006).
    OpenUrlCrossRefPubMed
  59. ↵
    1. T. Higurashi,
    2. J. K. Hines,
    3. C. Sahi,
    4. R. Aron,
    5. E. A. Craig
    , Specificity of the J-protein Sis1 in the propagation of 3 yeast prions. Proc. Natl. Acad. Sci. U.S.A. 105, 16596–16601 (2008).
    OpenUrlAbstract/FREE Full Text
  60. ↵
    1. A. Chacinska et al.
    , Ssb1 chaperone is a [PSI+] prion-curing factor. Curr. Genet. 39, 62–67 (2001).
    OpenUrlCrossRefPubMed
  61. ↵
    1. S. M. Doel,
    2. S. J. McCready,
    3. C. R. Nierras,
    4. B. S. Cox
    , The dominant PNM2- mutation which eliminates the psi factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene. Genetics 137, 659–670 (1994).
    OpenUrlAbstract/FREE Full Text
  62. ↵
    1. P. A. Kirkland,
    2. M. Reidy,
    3. D. C. Masison
    , Functions of yeast Hsp40 chaperone Sis1p dispensable for prion propagation but important for prion curing and protection from prion toxicity. Genetics 188, 565–577 (2011).
    OpenUrlAbstract/FREE Full Text
  63. ↵
    1. M. Reidy et al.
    , Hsp40s specify functions of Hsp104 and Hsp90 protein chaperone machines. PLoS Genet. 10, e1004720 (2014).
    OpenUrlCrossRefPubMed
  64. ↵
    1. K. D. Allen et al.
    , Hsp70 chaperones as modulators of prion life cycle: Novel effects of Ssa and Ssb on the Saccharomyces cerevisiae prion [PSI+]. Genetics 169, 1227–1242 (2005).
    OpenUrlAbstract/FREE Full Text
  65. ↵
    1. M. Rakwalska,
    2. S. Rospert
    , The ribosome-bound chaperones RAC and Ssb1/2p are required for accurate translation in Saccharomyces cerevisiae. Mol. Cell. Biol. 24, 9186–9197 (2004).
    OpenUrlAbstract/FREE Full Text
  66. ↵
    1. V. V. Kushnirov,
    2. N. V. Kochneva-Pervukhova,
    3. M. B. Chechenova,
    4. N. S. Frolova,
    5. M. D. Ter-Avanesyan
    , Prion properties of the Sup35 protein of yeast Pichia methanolica. EMBO J. 19, 324–331 (2000).
    OpenUrlAbstract/FREE Full Text
  67. ↵
    1. D. L. Lancaster,
    2. C. M. Dobson,
    3. R. A. Rachubinski
    , Chaperone proteins select and maintain [PIN+] prion conformations in Saccharomyces cerevisiae. J. Biol. Chem. 288, 1266–1276 (2013).
    OpenUrlAbstract/FREE Full Text
  68. ↵
    1. I. L. Derkatch,
    2. Y. O. Chernoff,
    3. V. V. Kushnirov,
    4. S. G. Inge-Vechtomov,
    5. S. W. Liebman
    , Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144, 1375–1386 (1996).
    OpenUrlAbstract/FREE Full Text
  69. ↵
    1. M. Tanaka,
    2. S. R. Collins,
    3. B. H. Toyama,
    4. J. S. Weissman
    , The physical basis of how prion conformations determine strain phenotypes. Nature 442, 585–589 (2006).
    OpenUrlCrossRefPubMed
  70. ↵
    1. A. A. Dergalev,
    2. A. I. Alexandrov,
    3. R. I. Ivannikov,
    4. M. D. Ter-Avanesyan,
    5. V. V. Kushnirov
    , Yeast Sup35 prion structure: Two types, four parts, many variants. Int. J. Mol. Sci. 20, 2633 (2019).
    OpenUrl
  71. ↵
    1. F. Shewmaker,
    2. R. B. Wickner,
    3. R. Tycko
    , Amyloid of the prion domain of Sup35p has an in-register parallel β-sheet structure. Proc. Natl. Acad. Sci. U.S.A. 103, 19754–19759 (2006).
    OpenUrlAbstract/FREE Full Text
  72. ↵
    1. U. Baxa et al.
    , Characterization of β-sheet structure in Ure2p1-89 yeast prion fibrils by solid-state nuclear magnetic resonance. Biochemistry 46, 13149–13162 (2007).
    OpenUrlCrossRefPubMed
  73. ↵
    1. A. Gorkovskiy,
    2. K. R. Thurber,
    3. R. Tycko,
    4. R. B. Wickner
    , Locating folds of the in-register parallel β-sheet of the Sup35p prion domain infectious amyloid. Proc. Natl. Acad. Sci. U.S.A. 111, E4615–E4622 (2014).
    OpenUrlAbstract/FREE Full Text
  74. ↵
    1. R. B. Wickner,
    2. H. K. Edskes,
    3. F. Shewmaker,
    4. T. Nakayashiki
    , Prions of fungi: Inherited structures and biological roles. Nat. Rev. Microbiol. 5, 611–618 (2007).
    OpenUrlCrossRefPubMed
  75. ↵
    1. R. B. Wickner et al.
    , Yeast prions: Structure, biology, and prion-handling systems. Microbiol. Mol. Biol. Rev. 79, 1–17 (2015).
    OpenUrlAbstract/FREE Full Text
  76. ↵
    1. Y. Zhang et al.
    , The ribosome-associated complex RAC serves in a relay that directs nascent chains to Ssb. Nat. Commun. 11, 1504 (2020).
    OpenUrl
  77. ↵
    1. J. Shorter,
    2. S. Lindquist
    , Hsp104, Hsp70 and Hsp40 interplay regulates formation, growth and elimination of Sup35 prions. EMBO J. 27, 2712–2724 (2008).
    OpenUrlAbstract/FREE Full Text
  78. ↵
    1. E. A. Winzeler et al.
    , Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).
    OpenUrlAbstract/FREE Full Text
  79. ↵
    1. C. Guthrie,
    2. G. R. Fink
    1. F. Sherman,
    “Getting started with yeast” in Guide to yeast genetics and molecular biology, C. Guthrie, G. R. Fink, Eds. (Academic Press, San Diego, 1991), Vol. 194, pp. 3–21.
    OpenUrl

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

Subscribers, for more details, please visit our Subscriptions FAQ.

Please click here to log into the PNAS submission website.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Normal levels of ribosome-associated chaperones cure two groups of [PSI+] prion variants
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Normal levels of ribosome-associated chaperones cure two groups of [PSI+] prion variants
Moonil Son, Reed B. Wickner
Proceedings of the National Academy of Sciences Oct 2020, 117 (42) 26298-26306; DOI: 10.1073/pnas.2016954117

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Normal levels of ribosome-associated chaperones cure two groups of [PSI+] prion variants
Moonil Son, Reed B. Wickner
Proceedings of the National Academy of Sciences Oct 2020, 117 (42) 26298-26306; DOI: 10.1073/pnas.2016954117
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 117 (42)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Biological Sciences
  • Genetics

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Materials and Methods
    • Data Availability.
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Abstract depiction of a guitar and musical note
Science & Culture: At the nexus of music and medicine, some see disease treatments
Although the evidence is still limited, a growing body of research suggests music may have beneficial effects for diseases such as Parkinson’s.
Image credit: Shutterstock/agsandrew.
Large piece of gold
News Feature: Tracing gold's cosmic origins
Astronomers thought they’d finally figured out where gold and other heavy elements in the universe came from. In light of recent results, they’re not so sure.
Image credit: Science Source/Tom McHugh.
Dancers in red dresses
Journal Club: Friends appear to share patterns of brain activity
Researchers are still trying to understand what causes this strong correlation between neural and social networks.
Image credit: Shutterstock/Yeongsik Im.
White and blue bird
Hazards of ozone pollution to birds
Amanda Rodewald, Ivan Rudik, and Catherine Kling talk about the hazards of ozone pollution to birds.
Listen
Past PodcastsSubscribe
Goats standing in a pin
Transplantation of sperm-producing stem cells
CRISPR-Cas9 gene editing can improve the effectiveness of spermatogonial stem cell transplantation in mice and livestock, a study finds.
Image credit: Jon M. Oatley.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490