Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Master curve of boosted diffusion for 10 catalytic enzymes

Ah-Young Jee, View ORCID ProfileTsvi Tlusty, and View ORCID ProfileSteve Granick
PNAS November 24, 2020 117 (47) 29435-29441; first published November 9, 2020; https://doi.org/10.1073/pnas.2019810117
Ah-Young Jee
aCenter for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, Republic of Korea;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tsvi Tlusty
aCenter for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, Republic of Korea;
bDepartment of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Tsvi Tlusty
Steve Granick
aCenter for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, Republic of Korea;
bDepartment of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea;
cDepartment of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Steve Granick
  • For correspondence: sgranick@gmail.com
  1. Contributed by Steve Granick, October 2, 2020 (sent for review September 21, 2020; reviewed by Mischa Bonn and Steve Pressé)

See related content:

  • A thermodynamic perspective on enhanced enzyme diffusion
    - Dec 09, 2020
  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

The literature is inconsistent regarding evidence for boosted molecular mobility during enzyme catalysis, a phenomenon that challenges the common tenet that enzyme mobility is governed solely by Brownian motion. This paper surveys 10 different catalytic enzymes and shows that magnitude of enhanced diffusion scales with energy release rate, the Gibbs free energy of reaction multiplied by the Michaelis–Menten reaction rate. A practical implication is that boosted effective diffusivity can be used to determine the energetics associated with enzyme action, since effective enzyme diffusivity is simply proportional to the change in free energy associated with the biochemical conversion. This master curve to predict the magnitude of boosted molecular mobility may be useful for estimating the effect in as-yet untested enzymes.

Abstract

Molecular agitation more rapid than thermal Brownian motion is reported for cellular environments, motor proteins, synthetic molecular motors, enzymes, and common chemical reactions, yet that chemical activity coupled to molecular motion contrasts with generations of accumulated knowledge about diffusion at equilibrium. To test the limits of this idea, a critical testbed is the mobility of catalytically active enzymes. Sentiment is divided about the reality of enhanced enzyme diffusion, with evidence for and against. Here a master curve shows that the enzyme diffusion coefficient increases in proportion to the energy release rate—the product of Michaelis-Menten reaction rate and Gibbs free energy change (ΔG)—with a highly satisfactory correlation coefficient of 0.97. For 10 catalytic enzymes (urease, acetylcholinesterase, seven enzymes from the glucose cascade cycle, and one other), our measurements span from a roughly 40% enhanced diffusion coefficient at a high turnover rate and negative ΔG to no enhancement at a slow turnover rate and positive ΔG. Moreover, two independent measures of mobility show consistency, provided that one avoids undesirable fluorescence photophysics. The master curve presented here quantifies the limits of both ideas, that enzymes display enhanced diffusion and that they do not within instrumental resolution, and has possible implications for understanding enzyme mobility in cellular environments. The striking linear dependence of ΔG for the exergonic enzymes (ΔG <0), together with the vanishing effect for endergonic enzyme (ΔG >0), are consistent with a physical picture in which the mechanism boosting the diffusion is an active one, utilizing the available work from the chemical reaction.

  • enzyme
  • diffusion
  • enhanced
  • catalysis
  • FCS

Footnotes

  • ↵1To whom correspondence may be addressed. Email: sgranick{at}gmail.com.
  • Author contributions: A.-Y.J. and S.G. designed research; A.-Y.J. performed research; A.-Y.J., T.T., and S.G. analyzed data; and A.-Y.J. and S.G. wrote the paper.

  • Reviewers: M.B., Max Planck Institute for Polymer Research; and S.P., Arizona State University.

  • The authors declare no competing interest.

  • See online for related content such as Commentaries.

Data Availability.

All study data are included in the main text.

  • Copyright © 2020 the Author(s). Published by PNAS.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Master curve of boosted diffusion for 10 catalytic enzymes
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Master curve of boosted diffusion for 10 catalytic enzymes
Ah-Young Jee, Tsvi Tlusty, Steve Granick
Proceedings of the National Academy of Sciences Nov 2020, 117 (47) 29435-29441; DOI: 10.1073/pnas.2019810117

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Master curve of boosted diffusion for 10 catalytic enzymes
Ah-Young Jee, Tsvi Tlusty, Steve Granick
Proceedings of the National Academy of Sciences Nov 2020, 117 (47) 29435-29441; DOI: 10.1073/pnas.2019810117
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 117 (47)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Physical Sciences
  • Biophysics and Computational Biology
  • Biological Sciences
  • Biophysics and Computational Biology

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Methods
    • Data Availability.
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Abstract depiction of a guitar and musical note
Science & Culture: At the nexus of music and medicine, some see disease treatments
Although the evidence is still limited, a growing body of research suggests music may have beneficial effects for diseases such as Parkinson’s.
Image credit: Shutterstock/agsandrew.
Scientist looking at an electronic tablet
Opinion: Standardizing gene product nomenclature—a call to action
Biomedical communities and journals need to standardize nomenclature of gene products to enhance accuracy in scientific and public communication.
Image credit: Shutterstock/greenbutterfly.
One red and one yellow modeled protein structures
Journal Club: Study reveals evolutionary origins of fold-switching protein
Shapeshifting designs could have wide-ranging pharmaceutical and biomedical applications in coming years.
Image credit: Acacia Dishman/Medical College of Wisconsin.
White and blue bird
Hazards of ozone pollution to birds
Amanda Rodewald, Ivan Rudik, and Catherine Kling talk about the hazards of ozone pollution to birds.
Listen
Past PodcastsSubscribe
Goats standing in a pin
Transplantation of sperm-producing stem cells
CRISPR-Cas9 gene editing can improve the effectiveness of spermatogonial stem cell transplantation in mice and livestock, a study finds.
Image credit: Jon M. Oatley.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490