Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Paleocene latitude of the Kohistan–Ladakh arc indicates multistage India–Eurasia collision

View ORCID ProfileCraig R. Martin, Oliver Jagoutz, Rajeev Upadhyay, Leigh H. Royden, View ORCID ProfileMichael P. Eddy, Elizabeth Bailey, View ORCID ProfileClaire I. O. Nichols, and Benjamin P. Weiss
PNAS November 24, 2020 117 (47) 29487-29494; first published November 4, 2020; https://doi.org/10.1073/pnas.2009039117
Craig R. Martin
aDepartment of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Craig R. Martin
  • For correspondence: crm7@mit.edu
Oliver Jagoutz
aDepartment of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rajeev Upadhyay
bDepartment of Geology, Kumaun University, 263 002 Nainital, India;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Leigh H. Royden
aDepartment of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael P. Eddy
cDepartment of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Michael P. Eddy
Elizabeth Bailey
dDepartment of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Claire I. O. Nichols
aDepartment of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Claire I. O. Nichols
Benjamin P. Weiss
aDepartment of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited by B. Clark Burchfiel, Massachusetts Institute of Technology, Cambridge, MA, and approved October 5, 2020 (received for review May 6, 2020)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

We present paleomagnetic constraints on the latitude of an intraoceanic subduction system that is now sutured between India and Eurasia in the western Himalaya. Our results demonstrate that the India–Eurasia collision was a multistage process involving at least two subduction systems rather than a single-stage event. This resolves the discrepancy between the amount of convergence and the observed crustal shortening in the India–Eurasia collision system, as well as the 10–15 Ma time lag between collision onset in India and the initiation of collision-related deformation and metamorphism in Eurasia. The presence of an additional subduction system in the Neotethys ocean explains the rapid India–Eurasia convergence rates in the Cretaceous and global climate variations in the Cenozoic.

Abstract

We report paleomagnetic data showing that an intraoceanic Trans-Tethyan subduction zone existed south of the Eurasian continent and north of the Indian subcontinent until at least Paleocene time. This system was active between 66 and 62 Ma at a paleolatitude of 8.1 ± 5.6 °N, placing it 600–2,300 km south of the contemporaneous Eurasian margin. The first ophiolite obductions onto the northern Indian margin also occurred at this time, demonstrating that collision was a multistage process involving at least two subduction systems. Collisional events began with collision of India and the Trans-Tethyan subduction zone in Late Cretaceous to Early Paleocene time, followed by the collision of India (plus Trans-Tethyan ophiolites) with Eurasia in mid-Eocene time. These data constrain the total postcollisional convergence across the India–Eurasia convergent zone to 1,350–2,150 km and limit the north–south extent of northwestern Greater India to <900 km. These results have broad implications for how collisional processes may affect plate reconfigurations, global climate, and biodiversity.

  • India
  • paleomagnetism
  • Neotethys
  • Himalaya
  • intraoceanic arc

Footnotes

  • ↵1To whom correspondence may be addressed. Email: crm7{at}mit.edu.
  • Author contributions: O.J., L.H.R., and B.P.W. designed research; C.R.M., O.J., R.U., L.H.R., and B.P.W. performed research; C.R.M., M.P.E., E.B., C.I.O.N., and B.P.W. analyzed data; and C.R.M., O.J., R.U., L.H.R., M.P.E., E.B., C.I.O.N., and B.P.W. wrote the paper.

  • The authors declare no competing interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2009039117/-/DCSupplemental.

Published under the PNAS license.

View Full Text

References

  1. ↵
    1. E. Garzanti,
    2. A. Baud,
    3. G. Mascle
    , Sedimentary record of the northward flight of India and its collision with Eurasia (Ladakh Himalaya, India). Geodin. Acta 1, 297–312 (1987).
    OpenUrl
  2. ↵
    1. K. V. Hodges
    , Tectonics of the Himalaya and southern Tibet from two perspectives. Geol. Soc. Am. Bull. 112, 324–350 (2000).
    OpenUrlAbstract/FREE Full Text
  3. ↵
    1. P. Patriat,
    2. J. Achache
    , India–Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature 311, 615–621 (1984).
    OpenUrlCrossRef
  4. ↵
    1. T. H. Torsvik et al
    ., Phanerozoic polar wander, palaeogeography and dynamics. Earth Sci. Rev. 114, 325–368 (2012).
    OpenUrl
  5. ↵
    1. A. Patzelt,
    2. H. Li,
    3. J. Wang,
    4. E. Appel
    , Palaeomagnetism of Cretaceous to tertiary sediments from southern Tibet: Evidence for the extent of the northern margin of India prior to the collision with Eurasia. Tectonophysics 259, 259–284 (1996).
    OpenUrlCrossRef
  6. ↵
    1. D. J. Van Hinsbergen et al
    ., Restoration of Cenozoic deformation in Asia and the size of Greater India. Tectonics 30, TC5003 (2011).
    OpenUrlCrossRef
  7. ↵
    1. J. C. Aitchison et al
    ., Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung–Zangbo suture (southern Tibet). Earth Planet. Sci. Lett. 183, 231–244 (2000).
    OpenUrl
  8. ↵
    1. S. Zahirovic et al
    ., Insights on the kinematics of the India‐Eurasia collision from global geodynamic models. Geochem. Geophys. Geosyst. 13, 4 (2012).
    OpenUrl
  9. ↵
    1. O. Jagoutz,
    2. L. Royden,
    3. A. F. Holt,
    4. T. W. Becker
    , Anomalously fast convergence of India and Eurasia caused by double subduction. Nat. Geosci. 8, 475–478 (2015).
    OpenUrlCrossRef
  10. ↵
    1. P. Bouilhol,
    2. O. Jagoutz,
    3. J. M. Hanchar,
    4. F. O. Dudas
    , Dating the India–Eurasia collision through arc magmatic records. Earth Planet. Sci. Lett. 366, 163–175 (2013).
    OpenUrl
  11. ↵
    1. O. Jagoutz,
    2. F. A. Macdonald,
    3. L. Royden
    , Low-latitude arc-continent collision as a driver for global cooling. Proc. Natl. Acad. Sci. U.S.A. 113, 4935–4940 (2016).
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. M. G. Petterson,
    2. B. F. Windley
    , RbSr dating of the Kohistan arc-batholith in the Trans-Himalaya of north Pakistan, and tectonic implications. Earth Planet. Sci. Lett. 74, 45–57 (1985).
    OpenUrl
  13. ↵
    1. P. C. Lippert,
    2. D. J. Van Hinsbergen,
    3. G. Dupont-Nivet
    , Early Cretaceous to Present Latitude of the Central Proto-Tibetan Plateau: A Paleomagnetic Synthesis with Implications for Cenozoic Tectonics, Paleogeography, and Climate of Asia (Geological Society of America Special Papers, 2014), vol. 507, pp. 1–21.
    OpenUrl
  14. ↵
    1. D. J. van Hinsbergen et al
    ., Reconstructing Greater India: Paleogeographic, kinematic, and geodynamic perspectives. Tectonophysics 760, 69–94 (2019).
    OpenUrl
  15. ↵
    1. E. Garzanti
    , Comment on “When and where did India and Asia collide?” by Jonathan C. Aitchison, Jason R. Ali, and Aileen M. Davis. J. Geophys. Res. Solid Earth 113, B04411 (2008).
    OpenUrl
  16. ↵
    1. X. Hu et al
    ., The timing of India-Asia collision onset—Facts, theories, controversies. Earth Sci. Rev. 160, 264–299 (2016).
    OpenUrlCrossRef
  17. ↵
    1. L.-L. Zhang,
    2. C.-Z. Liu,
    3. F.-Y. Wu,
    4. W.-Q. Ji,
    5. J.-G. Wang
    , Zedong terrane revisited: An intra-oceanic arc within Neo-Tethys or a part of the Asian active continental margin? J. Asian Earth Sci. 80, 34–55 (2014).
    OpenUrl
  18. ↵
    1. J. Westerweel et al
    ., Burma Terrane part of the Trans-Tethyan Arc during collision with India according to palaeomagnetic data. Nat. Geosci. 12, 863–868 (2019).
    OpenUrl
  19. ↵
    1. R. A. Beck,
    2. D. W. Burbank,
    3. W. J. Sercombe,
    4. A. M. Khan,
    5. R. D. Lawrence
    , Late Cretaceous ophiolite obduction and Paleocene India-Asia collision in the westernmost Himalaya. Geodin. Acta 9, 114–144 (1996).
    OpenUrl
  20. ↵
    1. P. Tapponnier,
    2. M. Mattauer,
    3. F. Proust,
    4. C. Cassaigneau
    , Mesozoic ophiolites, sutures, and large-scale tectonic movements in Afghanistan. Earth Planet. Sci. Lett. 52, 355–371 (1981).
    OpenUrl
  21. ↵
    1. R. K. Tahirkheli
    , Geology of Kohistan and adjoining Eurasian and Indo-Pakistan continents, Pakistan. Geolog. Bull. Univ. Peshawar 11, 1–30 (1979).
    OpenUrl
  22. ↵
    1. M. N. Ahmad,
    2. M. Yoshida,
    3. Y. Fujiwara
    , Paleomagnetic study of Utror volcanic formation: Remagnetizations and postfolding rotations in Utror area, Kohistan arc, northern Pakistan. Earth Planets Space 52, 425–436 (2000).
    OpenUrl
  23. ↵
    1. C. Klootwijk et al
    ., The extent of Greater India, II. Palaeomagnetic data from the Ladakh intrusives at Kargil, northwestern Himalayas. Earth Planet. Sci. Lett. 44, 47–64 (1979).
    OpenUrl
  24. ↵
    1. H. Zaman,
    2. M. Torii
    , Palaeomagnetic study of Cretaceous red beds from the eastern Hindukush ranges, northern Pakistan: Palaeoreconstruction of the Kohistan–Karakoram composite unit before the India–Asia collision. Geophys. J. Int. 136, 719–738 (1999).
    OpenUrlCrossRef
  25. ↵
    1. H. Zaman,
    2. Y.-i. Otofuji,
    3. S. R. Khan,
    4. M. N. Ahmad
    , New paleomagnetic results from the northern margin of the Kohistan Island Arc. Arab. J. Geosci. 6, 1041–1054 (2013).
    OpenUrl
  26. ↵
    1. W. J. Dunlap,
    2. R. Wysoczanski
    , Thermal evidence for early Cretaceous metamorphism in the Shyok suture zone and age of the Khardung volcanic rocks, Ladakh, India. J. Asian Earth Sci. 20, 481–490 (2002).
    OpenUrl
  27. ↵
    1. N. Lakhan et al
    ., Zircon U–Pb geochronology, mineral and whole‐rock geochemistry of the Khardung volcanics, Ladakh Himalaya, India: Implications for Late Cretaceous to Palaeogene continental arc magmatism. Geol. J. 55, 3297–3320 (2020).
    OpenUrl
  28. ↵
    1. J. S. Barnet et al
    ., A high‐fidelity benthic stable isotope record of late Cretaceous–early Eocene climate change and carbon‐cycling. Paleoceanogr. Paleoclimatol. 34, 672–691 (2019).
    OpenUrl
  29. ↵
    1. R. Van der Voo
    , The reliability of paleomagnetic data. Tectonophysics 184, 1–9 (1990).
    OpenUrlCrossRef
  30. ↵
    1. G. Watson
    , A test for randomness of directions. Geophys. J. Int. 7, 160–161 (1956).
    OpenUrlCrossRef
  31. ↵
    1. K. L. Buchan
    , Key paleomagnetic poles and their use in proterozoic continent and supercontinent reconstructions: A review. Precambrian Res. 238, 93–110 (2013).
    OpenUrlCrossRef
  32. ↵
    1. M. H. Deenen,
    2. C. G. Langereis,
    3. D. J. van Hinsbergen,
    4. A. J. Biggin
    , Geomagnetic secular variation and the statistics of palaeomagnetic directions. Geophys. J. Int. 186, 509–520 (2011).
    OpenUrlCrossRef
  33. ↵
    1. S. C. Cande,
    2. P. Patriat,
    3. J. Dyment
    , Motion between the Indian, Antarctic and African plates in the early Cenozoic. Geophys. J. Int. 183, 127–149 (2010).
    OpenUrlCrossRef
  34. ↵
    1. Y. Najman et al
    ., The Tethyan Himalayan detrital record shows that India–Asia terminal collision occurred by 54 Ma in the western Himalaya. Earth Planet. Sci. Lett. 459, 301–310 (2017).
    OpenUrl
  35. ↵
    1. N. L. Borneman et al
    ., Age and structure of the Shyok suture in the Ladakh region of northwestern India: Implications for slip on the Karakoram fault system. Tectonics 34, 2011–2033 (2015).
    OpenUrl
  36. ↵
    1. R. Upadhyay,
    2. A. K. Sinha,
    3. R. Chandra,
    4. H. Rai
    , Tectonic and magmatic evolution of the eastern Karakoram, India. Geodin. Acta 12, 341–358 (1999).
    OpenUrl
  37. ↵
    1. R. F. Weinberg,
    2. W. J. Dunlap
    , Growth and deformation of the Ladakh batholith, northwest Himalayas: Implications for timing of continental collision and origin of calc-alkaline batholiths. J. Geol. 108, 303–320 (2000).
    OpenUrlCrossRefPubMed
  38. ↵
    1. N. X. Thanh et al
    ., A Cretaceous forearc ophiolite in the Shyok suture zone, Ladakh, NW India: Implications for the tectonic evolution of the northwest Himalaya. Lithos 155, 81–93 (2012).
    OpenUrl
  39. ↵
    1. L. Guangwei et al
    ., In-situ detrital zircon geochronology and Hf isotopic analyses from upper Triassic Tethys sequence strata. Earth Planet. Sci. Lett. 297, 461–470 (2010).
    OpenUrl
  40. ↵
    1. F. Cai et al
    ., Late Triassic paleogeographic reconstruction along the Neo–Tethyan ocean margins, southern Tibet. Earth Planet. Sci. Lett. 435, 105–114 (2016).
    OpenUrl
  41. ↵
    1. M. Murphy et al
    ., Southward propagation of the Karakoram fault system, southwest Tibet: Timing and magnitude of slip. Geology 28, 451–454 (2000).
    OpenUrlAbstract/FREE Full Text
  42. ↵
    1. J. Burg,
    2. G. Chen
    , Tectonics and structural zonation of southern Tibet, China. Nature 311, 219–223 (1984).
    OpenUrlCrossRef
  43. ↵
    1. A. Yin et al
    ., Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision. Geol. Soc. Am. Bull. 111, 1644–1664 (1999).
    OpenUrlAbstract/FREE Full Text
  44. ↵
    1. P. Kapp,
    2. P. G. DeCelles
    , Mesozoic–Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses. Am. J. Sci. 319, 159–254 (2019).
    OpenUrlAbstract/FREE Full Text
  45. ↵
    1. R. Hébert et al
    ., The Indus–Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: First synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys. Gondwana Res. 22, 377–397 (2012).
    OpenUrl
  46. ↵
    1. X. M. Hu,
    2. J. G. Wang,
    3. M. BouDagher-Fadel,
    4. E. Garzanti,
    5. W. An
    , New insights into the timing of the India-Asia collision from the Paleogene Quxia and Jialazi formations of the Xigaze forearc basin, South Tibet. Gondwana Res. 32, 76–92 (2016).
    OpenUrl
  47. ↵
    1. O. Jagoutz,
    2. P. Bouilhol,
    3. U. Schaltegger,
    4. O. Müntener
    , The isotopic evolution of the Kohistan Ladakh arc from subduction initiation to continent arc collision. Geol. Soc. Lond. Spec. Publ. 483, 165–182 (2019).
    OpenUrl
  48. ↵
    1. P. DeCelles,
    2. P. Kapp,
    3. G. Gehrels,
    4. L. Ding
    , Paleocene‐Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: Implications for the age of initial India‐Asia collision. Tectonics 33, 824–849 (2014).
    OpenUrlCrossRef
  49. ↵
    1. P. Molnar,
    2. J. M. Stock
    , Slowing of India’s convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics 28, TC3001 (2009).
    OpenUrlCrossRef
  50. ↵
    1. P. H. Leloup et al
    ., New constraints on the structure, thermochronology, and timing of the Ailao Shan‐Red River shear zone, SE Asia. J. Geophys. Res. Solid Earth 106, 6683–6732 (2001).
    OpenUrl
  51. ↵
    1. J.-P. Burg,
    2. P. Bouilhol
    , Timeline of the South Tibet–Himalayan belt: The geochronological record of subduction, collision, and underthrusting from zircon and monazite U–Pb ages. Can. J. Earth Sci. 56, 1318–1332 (2019).
    OpenUrl
  52. ↵
    1. P. G. DeCelles,
    2. D. M. Robinson,
    3. G. Zandt
    , Implications of shortening in the Himalayan fold‐thrust belt for uplift of the Tibetan Plateau. Tectonics 21, 12-11–12-25 (2002).
    OpenUrl
  53. ↵
    1. C. Li,
    2. R. D. Van der Hilst,
    3. A. S. Meltzer,
    4. E. R. Engdahl
    , Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet. Sci. Lett. 274, 157–168 (2008).
    OpenUrl
  54. ↵
    1. J. M. Mattinson
    , Zircon U–Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem. Geol. 220, 47–66 (2005).
    OpenUrlCrossRef
  55. ↵
    1. M. P. Eddy et al
    ., High-resolution temporal and stratigraphic record of Siletzia’s accretion and triple junction migration from nonmarine sedimentary basins in central and western Washington. Bulletin 128, 425–441 (2016).
    OpenUrl
  56. ↵
    1. N. M. McLean,
    2. D. J. Condon,
    3. B. Schoene,
    4. S. A. Bowring
    , Evaluating uncertainties in the calibration of isotopic reference materials and multi-element isotopic tracers (EARTHTIME Tracer Calibration Part II). Geochim. Cosmochim. Acta 164, 481–501 (2015).
    OpenUrlCrossRef
  57. ↵
    1. H. K. Krogh,
    2. J. A. Maeland,
    3. O. Tönder
    , Indirect haemagglutination for demonstration of antibodies to stratum corneum of skin. Int. Arch. Allergy Immunol. 42, 493–502 (1972).
    OpenUrl
  58. ↵
    1. A. O. Nier
    , A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Phys. Rev. 77, 789–793 (1950).
    OpenUrlCrossRef
  59. ↵
    1. J. Hiess,
    2. D. J. Condon,
    3. N. McLean,
    4. S. R. Noble
    , 238U/235U systematics in terrestrial uranium-bearing minerals. Science 335, 1610–1614 (2012).
    OpenUrlAbstract/FREE Full Text
  60. ↵
    1. U. Schärer
    , The effect of initial230Th disequilibrium on young UPb ages: The Makalu case, Himalaya. Earth Planet. Sci. Lett. 67, 191–204 (1984).
    OpenUrl
  61. ↵
    1. D. E. Moser,
    2. F. Corfu,
    3. J. R. Darling,
    4. S. M. Reddy,
    5. K. Tait
    1. L. L. Claiborne et al
    ., “Zircon as magma monitor: Robust, temperature‐dependent partition coefficients from glass and zircon surface and rim measurements from natural systems” in Microstructural Geochronology: Planetary Records Down to Atom Scale, D. E. Moser, F. Corfu, J. R. Darling, S. M. Reddy, K. Tait, Eds. (American Geophysical Union, 2018), pp. 1–33.
  62. ↵
    1. J. F. Bowring,
    2. N. M. McLean,
    3. S. Bowring
    , Engineering cyber infrastructure for U‐Pb geochronology: Tripoli and U‐Pb_Redux. Geochem. Geophys. Geosyst., doi:10.1029/2010GC003479 (2011).
    OpenUrlCrossRef
  63. ↵
    1. N. M. McLean,
    2. J. F. Bowring,
    3. S. A. Bowring
    , An algorithm for U‐Pb isotope dilution data reduction and uncertainty propagation. Geochem. Geophys. Geosyst., doi:10.1029/2010GC003478 (2011).
    OpenUrlCrossRef
  64. ↵
    1. A. H. Jaffey,
    2. K. F. Flynn,
    3. L. E. Glendenin,
    4. W. C. Bentley,
    5. A. M. Essling
    , Precision measurement of half-lives and specific activities of U 235 and U 238. Phys. Rev. C 4, 1889–1906 (1971).
    OpenUrlCrossRef
  65. ↵
    1. J. L. Kirschvink,
    2. R. E. Kopp,
    3. T. D. Raub,
    4. C. T. Baumgartner,
    5. J. W. Holt
    , Rapid, precise, and high‐sensitivity acquisition of paleomagnetic and rock‐magnetic data: Development of a low‐noise automatic sample changing system for superconducting rock magnetometers. Geochem. Geophys. Geosyst., doi:10.1029/2007GC001856 (2008).
    OpenUrlCrossRef
  66. ↵
    1. J. Kirschvink
    , The least-squares line and plane and the analysis of palaeomagnetic data. Geophys. J. Int. 62, 699–718 (1980).
    OpenUrlCrossRef
  67. ↵
    1. R. A. Fisher
    , Dispersion on a sphere. Proc. R. Soc. Lond. A Math. Phys. Sci. 217, 295–305 (1953).
    OpenUrlCrossRef
  68. ↵
    1. N. I. Fisher,
    2. T. Lewis
    , Estimating the common mean direction of several circular or spherical distributions with differing dispersions. Biometrika 70, 333–341 (1983).
    OpenUrlCrossRef
  69. ↵
    1. L. Tauxe
    , Essentials of Paleomagnetism (University of California Press, 2010).
  70. ↵
    1. L. Tauxe et al
    ., PmagPy: Software package for paleomagnetic data analysis and a bridge to the magnetics information consortium (MagIC) database. Geochem. Geophys. Geosyst. 17, 2450–2463 (2016).
    OpenUrl
  71. ↵
    1. S. A. MacLennan et al
    ., Geologic evidence for an icehouse Earth before the Sturtian global glaciation. Sci. Adv. 6, eaay6647 (2020).
    OpenUrlFREE Full Text

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

Subscribers, for more details, please visit our Subscriptions FAQ.

Please click here to log into the PNAS submission website.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Paleocene latitude of the Kohistan–Ladakh arc indicates multistage India–Eurasia collision
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Paleocene latitude of the Kohistan–Ladakh arc indicates multistage India–Eurasia collision
Craig R. Martin, Oliver Jagoutz, Rajeev Upadhyay, Leigh H. Royden, Michael P. Eddy, Elizabeth Bailey, Claire I. O. Nichols, Benjamin P. Weiss
Proceedings of the National Academy of Sciences Nov 2020, 117 (47) 29487-29494; DOI: 10.1073/pnas.2009039117

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Paleocene latitude of the Kohistan–Ladakh arc indicates multistage India–Eurasia collision
Craig R. Martin, Oliver Jagoutz, Rajeev Upadhyay, Leigh H. Royden, Michael P. Eddy, Elizabeth Bailey, Claire I. O. Nichols, Benjamin P. Weiss
Proceedings of the National Academy of Sciences Nov 2020, 117 (47) 29487-29494; DOI: 10.1073/pnas.2009039117
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 117 (47)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Physical Sciences
  • Earth, Atmospheric, and Planetary Sciences

Jump to section

  • Article
    • Abstract
    • Paleomagnetism of the Khardung Volcanics
    • Discussion
    • Materials and Methods
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Surgeons hands during surgery
Inner Workings: Advances in infectious disease treatment promise to expand the pool of donor organs
Despite myriad challenges, clinicians see room for progress.
Image credit: Shutterstock/David Tadevosian.
Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Double helix
Journal Club: Noncoding DNA shown to underlie function, cause limb malformations
Using CRISPR, researchers showed that a region some used to label “junk DNA” has a major role in a rare genetic disorder.
Image credit: Nathan Devery.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Multi-color molecular model
Enzymatic breakdown of PET plastic
A study demonstrates how two enzymes—MHETase and PETase—work synergistically to depolymerize the plastic pollutant PET.
Image credit: Aaron McGeehan (artist).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490