Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

Degenerative and regenerative pathways underlying Duchenne muscular dystrophy revealed by single-nucleus RNA sequencing

View ORCID ProfileFrancesco Chemello, View ORCID ProfileZhaoning Wang, View ORCID ProfileHui Li, John R. McAnally, Ning Liu, Rhonda Bassel-Duby, and View ORCID ProfileEric N. Olson
  1. aDepartment of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390;
  2. bHamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390;
  3. cSenator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390

See allHide authors and affiliations

PNAS November 24, 2020 117 (47) 29691-29701; first published November 4, 2020; https://doi.org/10.1073/pnas.2018391117
Francesco Chemello
aDepartment of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390;
bHamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390;
cSenator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Francesco Chemello
Zhaoning Wang
aDepartment of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390;
bHamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390;
cSenator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Zhaoning Wang
Hui Li
aDepartment of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390;
bHamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390;
cSenator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hui Li
John R. McAnally
aDepartment of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390;
bHamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390;
cSenator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ning Liu
aDepartment of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390;
bHamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390;
cSenator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rhonda Bassel-Duby
aDepartment of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390;
bHamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390;
cSenator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eric N. Olson
aDepartment of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390;
bHamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390;
cSenator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Eric N. Olson
  • For correspondence: Eric.Olson@utsouthwestern.edu
  1. Contributed by Eric N. Olson, October 6, 2020 (sent for review September 1, 2020; reviewed by Daniel J. Garry and Thomas A. Rando)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

Skeletal muscle is composed of multinucleated myofibers that are essential for movement and metabolism. Duchenne muscular dystrophy (DMD) is a devastating disease that is caused by the lack of the dystrophin protein, which maintains the integrity of muscle membranes. The absence of dystrophin results in myofiber degeneration followed by regeneration until muscle stem cells are depleted. We generated a new DMD mouse model lacking exon 51 and then used single-nucleus RNA sequencing to reveal the transcriptional diversity of individual myofiber nuclei in dystrophic muscle compared to normal muscle. Our findings uncover disease-associated pathways responsible for muscle degeneration and regeneration that might ultimately be manipulated therapeutically and reveal an unrecognized regenerative myonuclear population associated with dystrophic muscle.

Abstract

Duchenne muscular dystrophy (DMD) is a fatal muscle disorder characterized by cycles of degeneration and regeneration of multinucleated myofibers and pathological activation of a variety of other muscle-associated cell types. The extent to which different nuclei within the shared cytoplasm of a myofiber may display transcriptional diversity and whether individual nuclei within a multinucleated myofiber might respond differentially to DMD pathogenesis is unknown. Similarly, the potential transcriptional diversity among nonmuscle cell types within dystrophic muscle has not been explored. Here, we describe the creation of a mouse model of DMD caused by deletion of exon 51 of the dystrophin gene, which represents a prevalent disease-causing mutation in humans. To understand the transcriptional abnormalities and heterogeneity associated with myofiber nuclei, as well as other mononucleated cell types that contribute to the muscle pathology associated with DMD, we performed single-nucleus transcriptomics of skeletal muscle of mice with dystrophin exon 51 deletion. Our results reveal distinctive and previously unrecognized myonuclear subtypes within dystrophic myofibers and uncover degenerative and regenerative transcriptional pathways underlying DMD pathogenesis. Our findings provide insights into the molecular underpinnings of DMD, controlled by the transcriptional activity of different types of muscle and nonmuscle nuclei.

  • myonuclei
  • myofibers
  • DMD mouse model
  • dystrophin
  • skeletal muscle

Footnotes

  • ↵1F.C. and Z.W. contributed equally to this work.

  • ↵2To whom correspondence may be addressed. Email: Eric.Olson{at}utsouthwestern.edu.
  • Author contributions: F.C., Z.W., N.L., R.B.-D., and E.N.O. designed research; F.C., Z.W., H.L., and J.R.M. performed research; F.C. and Z.W. analyzed data; and F.C., Z.W., N.L., R.B.-D., and E.N.O. wrote the paper.

  • Reviewers: D.J.G., University of Minnesota; and T.A.R., Stanford University School of Medicine.

  • The authors declare no competing interest.

  • See online for related content such as Commentaries.

  • This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2018391117/-/DCSupplemental.

Statistics and Data Availability.

Statistical analyses were performed using GraphPad Prism 8 using a two-tailed unpaired t test, with P value < 0.05 considered significant. All data are displayed as mean ± SEM unless otherwise indicated. All sequencing data have been deposited in the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE156498.

Published under the PNAS license.

View Full Text

References

  1. ↵
    1. J. Chal,
    2. O. Pourquie
    , Making muscle: Skeletal myogenesis in vivo and in vitro. Development 144, 2104–2122 (2017).
    OpenUrlAbstract/FREE Full Text
  2. ↵
    1. H. Yin,
    2. F. Price,
    3. M. A. Rudnicki
    , Satellite cells and the muscle stem cell niche. Physiol. Rev. 93, 23–67 (2013).
    OpenUrlCrossRefPubMed
  3. ↵
    1. J. D. Doles,
    2. B. B. Olwin
    , Muscle stem cells on the edge. Curr. Opin. Genet. Dev. 34, 24–28 (2015).
    OpenUrlCrossRefPubMed
  4. ↵
    1. G. Q. Wallace,
    2. E. M. McNally
    , Mechanisms of muscle degeneration, regeneration, and repair in the muscular dystrophies. Annu. Rev. Physiol. 71, 37–57 (2009).
    OpenUrlCrossRefPubMed
  5. ↵
    1. D. E. Michele,
    2. K. P. Campbell
    , Dystrophin-glycoprotein complex: Post-translational processing and dystroglycan function. J. Biol. Chem. 278, 15457–15460 (2003).
    OpenUrlFREE Full Text
  6. ↵
    1. K. M. Flanigan et al
    ., Mutational spectrum of DMD mutations in dystrophinopathy patients: Application of modern diagnostic techniques to a large cohort. Hum. Mutat. 30, 1657–1666 (2009).
    OpenUrlCrossRefPubMed
  7. ↵
    1. M. Durbeej,
    2. K. P. Campbell
    , Muscular dystrophies involving the dystrophin-glycoprotein complex: An overview of current mouse models. Curr. Opin. Genet. Dev. 12, 349–361 (2002).
    OpenUrlCrossRefPubMed
  8. ↵
    1. N. B. Wasala,
    2. S. J. Chen,
    3. D. Duan
    , Duchenne muscular dystrophy animal models for high-throughput drug discovery and precision medicine. Expert Opin. Drug Discov. 15, 443–456 (2020).
    OpenUrl
  9. ↵
    1. Y. Echigoya,
    2. K. R. Q. Lim,
    3. A. Nakamura,
    4. T. Yokota
    , Multiple exon skipping in the Duchenne muscular dystrophy hot spots: Prospects and challenges. J. Pers. Med. 8, 41 (2018).
    OpenUrl
  10. ↵
    1. G. Bulfield,
    2. W. G. Siller,
    3. P. A. Wight,
    4. K. J. Moore
    , X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc. Natl. Acad. Sci. U.S.A. 81, 1189–1192 (1984).
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. A. Briguet,
    2. I. Courdier-Fruh,
    3. M. Foster,
    4. T. Meier,
    5. J. P. Magyar
    , Histological parameters for the quantitative assessment of muscular dystrophy in the mdx-mouse. Neuromuscul. Disord. 14, 675–682 (2004).
    OpenUrlCrossRefPubMed
  12. ↵
    1. L. Amoasii et al
    ., Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. Sci. Transl Med. 9, eaan8081 (2017).
    OpenUrlAbstract/FREE Full Text
  13. ↵
    1. Y. L. Min et al
    ., CRISPR-Cas9 corrects Duchenne muscular dystrophy exon 44 deletion mutations in mice and human cells. Sci. Adv. 5, eaav4324 (2019).
    OpenUrlFREE Full Text
  14. ↵
    1. Y. L. Min et al
    ., Correction of three prominent mutations in mouse and human models of Duchenne muscular dystrophy by single-cut genome editing. Mol. Ther. 28, 2044–2055 (2020).
    OpenUrl
  15. ↵
    1. J. R. Mendell,
    2. M. Lloyd-Puryear
    , Report of MDA muscle disease symposium on newborn screening for Duchenne muscular dystrophy. Muscle Nerve 48, 21–26 (2013).
    OpenUrlCrossRefPubMed
  16. ↵
    1. Y. Hathout et al
    ., Discovery of serum protein biomarkers in the mdx mouse model and cross-species comparison to Duchenne muscular dystrophy patients. Hum. Mol. Genet. 23, 6458–6469 (2014).
    OpenUrlCrossRefPubMed
  17. ↵
    1. J. G. Quinlan et al
    ., Evolution of the mdx mouse cardiomyopathy: Physiological and morphological findings. Neuromuscul. Disord. 14, 491–496 (2004).
    OpenUrlCrossRefPubMed
  18. ↵
    1. D. W. Van Pelt et al
    ., Multiomics analysis of the mdx/mTR mouse model of Duchenne muscular dystrophy. Connect. Tissue Res., 1–16 (2020).
  19. ↵
    1. S. Schiaffino,
    2. C. Reggiani
    , Fiber types in mammalian skeletal muscles. Physiol. Rev. 91, 1447–1531 (2011).
    OpenUrlCrossRefPubMed
  20. ↵
    1. E. Becht et al
    ., Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019).
    OpenUrl
  21. ↵
    1. E. X. Albuquerque,
    2. E. F. Pereira,
    3. M. Alkondon,
    4. S. W. Rogers
    , Mammalian nicotinic acetylcholine receptors: From structure to function. Physiol. Rev. 89, 73–120 (2009).
    OpenUrlCrossRefPubMed
  22. ↵
    1. S. M. Sigoillot,
    2. F. Bourgeois,
    3. M. Lambergeon,
    4. L. Strochlic,
    5. C. Legay
    , ColQ controls postsynaptic differentiation at the neuromuscular junction. J. Neurosci. 30, 13–23 (2010).
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. B. Charvet et al
    ., Knockdown of col22a1 gene in zebrafish induces a muscular dystrophy by disruption of the myotendinous junction. Development 140, 4602–4613 (2013).
    OpenUrlAbstract/FREE Full Text
  24. ↵
    1. C. E. Holterman,
    2. F. Le Grand,
    3. S. Kuang,
    4. P. Seale,
    5. M. A. Rudnicki
    , Megf10 regulates the progression of the satellite cell myogenic program. J. Cell Biol. 179, 911–922 (2007).
    OpenUrlAbstract/FREE Full Text
  25. ↵
    1. P. Lertkiatmongkol,
    2. D. Y. Liao,
    3. H. Mei,
    4. Y. Hu,
    5. P. J. Newman
    , Endothelial functions of platelet/endothelial cell adhesion molecule-1 (CD31). Curr. Opin. Hematol. 23, 253–259 (2016).
    OpenUrlPubMed
  26. ↵
    1. M. N. Wosczyna et al
    ., Mesenchymal stromal cells are required for regeneration and homeostatic maintenance of skeletal muscle. Cell Rep. 27, 2029–2035 (2019).
    OpenUrlCrossRef
  27. ↵
    1. C. Milet,
    2. D. Duprez
    , The Mkx homeoprotein promotes tenogenesis in stem cells and improves tendon repair. Ann. Transl. Med. 3, S33 (2015).
    OpenUrl
  28. ↵
    1. L. A. Waddell et al
    ., ADGRE1 (EMR1, F4/80) is a rapidly-evolving gene expressed in mammalian monocyte-macrophages. Front. Immunol. 9, 2246 (2018).
    OpenUrlCrossRefPubMed
  29. ↵
    1. M. Sandri
    , Protein breakdown in muscle wasting: Role of autophagy-lysosome and ubiquitin-proteasome. Int. J. Biochem. Cell Biol. 45, 2121–2129 (2013).
    OpenUrlCrossRefPubMed
  30. ↵
    1. G. Milan et al
    ., Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nat. Commun. 6, 6670 (2015).
    OpenUrlCrossRefPubMed
  31. ↵
    1. J. W. Ye,
    2. Y. Zhang,
    3. J. L. Xu,
    4. Q. Zhang,
    5. D. H. Zhu
    , FBXO40, a gene encoding a novel muscle-specific F-box protein, is upregulated in denervation-related muscle atrophy. Gene 404, 53–60 (2007).
    OpenUrlCrossRefPubMed
  32. ↵
    1. T. K. Watanabe et al
    ., Molecular cloning of UBE2G, encoding a human skeletal muscle-specific ubiquitin-conjugating enzyme homologous to UBC7 of C-elegans. Cytogenet. Cell Genet. 74, 146–148 (1996).
    OpenUrlCrossRefPubMed
  33. ↵
    1. C. I. An,
    2. E. Ganio,
    3. N. Hagiwara
    , Trip12, a HECT domain E3 ubiquitin ligase, targets Sox6 for proteasomal degradation and affects fiber type-specific gene expression in muscle cells. Skelet. Muscle 3, 11 (2013).
    OpenUrlCrossRefPubMed
  34. ↵
    1. T. N. Stitt et al
    ., The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol. Cell 14, 395–403 (2004).
    OpenUrlCrossRefPubMed
  35. ↵
    1. M. Sandri et al
    ., Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117, 399–412 (2004).
    OpenUrlCrossRefPubMed
  36. ↵
    1. C. Mammucari et al
    ., FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 6, 458–471 (2007).
    OpenUrlCrossRefPubMed
  37. ↵
    1. M. Perillo,
    2. E. S. Folker
    , Specialized positioning of myonuclei near cell-cell junctions. Front. Physiol. 9, 1531 (2018).
    OpenUrlCrossRef
  38. ↵
    1. J. D. Bernet et al
    ., p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat. Med. 20, 265–271 (2014).
    OpenUrlCrossRefPubMed
  39. ↵
    1. S. K. Powers,
    2. A. N. Kavazis,
    3. J. M. McClung
    , Oxidative stress and disuse muscle atrophy. J. Appl. Physiol. 102, 2389–2397 (2007).
    OpenUrlCrossRefPubMed
  40. ↵
    1. S. Wust et al
    ., Metabolic maturation during muscle stem cell differentiation is achieved by miR-1/133a-mediated inhibition of the DlK1-Dio3 mega gene cluster. Cell Metab. 27, 1026–1039 (2018).
    OpenUrlCrossRefPubMed
  41. ↵
    1. D. P. Millay,
    2. L. B. Sutherland,
    3. R. Bassel-Duby,
    4. E. N. Olson
    , Myomaker is essential for muscle regeneration. Genes Dev. 28, 1641–1646 (2014).
    OpenUrlAbstract/FREE Full Text
  42. ↵
    1. X. Qiu et al
    ., Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).
    OpenUrlCrossRefPubMed
  43. ↵
    1. A. L. Campbell,
    2. D. Eng,
    3. M. K. Gross,
    4. C. Kioussi
    , Prediction of gene network models in limb muscle precursors. Gene 509, 16–23 (2012).
    OpenUrl
  44. ↵
    1. K. L. Capkovic,
    2. S. Stevenson,
    3. M. C. Johnson,
    4. J. J. Thelen,
    5. D. D. Cornelison
    , Neural cell adhesion molecule (NCAM) marks adult myogenic cells committed to differentiation. Exp. Cell Res. 314, 1553–1565 (2008).
    OpenUrlCrossRefPubMed
  45. ↵
    1. G. Scita,
    2. S. Confalonieri,
    3. P. Lappalainen,
    4. S. Suetsugu
    , IRSp53: Crossing the road of membrane and actin dynamics in the formation of membrane protrusions. Trends Cell Biol. 18, 52–60 (2008).
    OpenUrlCrossRefPubMed
  46. ↵
    1. N. Liu et al
    ., Requirement of MEF2A, C, and D for skeletal muscle regeneration. Proc. Natl. Acad. Sci. U.S.A. 111, 4109–4114 (2014).
    OpenUrlAbstract/FREE Full Text
  47. ↵
    1. K. B. Umansky et al
    ., Runx1 transcription factor is required for myoblasts proliferation during muscle regeneration. PLoS Genet. 11, e1005457 (2015).
    OpenUrlCrossRef
  48. ↵
    1. O. Ostrovsky,
    2. E. Bengal,
    3. A. Aronheim
    , Induction of terminal differentiation by the c-Jun dimerization protein JDP2 in C2 myoblasts and rhabdomyosarcoma cells. J. Biol. Chem. 277, 40043–40054 (2002).
    OpenUrlAbstract/FREE Full Text
  49. ↵
    1. J. C. Bruusgaard,
    2. K. Liestol,
    3. M. Ekmark,
    4. K. Kollstad,
    5. K. Gundersen
    , Number and spatial distribution of nuclei in the muscle fibres of normal mice studied in vivo. J. Physiol. 551, 467–478 (2003).
    OpenUrlCrossRefPubMed
  50. ↵
    1. D. M. Blackburn et al
    ., High-resolution genome-wide expression analysis of single myofibers using SMART-Seq. J. Biol. Chem. 294, 20097–20108 (2019).
    OpenUrlAbstract/FREE Full Text
  51. ↵
    1. F. Chemello et al
    ., Transcriptomic analysis of single isolated myofibers identifies miR-27a-3p and miR-142-3p as regulators of metabolism in skeletal muscle. Cell Rep. 26, 3784–3797.e8 (2019).
    OpenUrlCrossRef
  52. ↵
    1. L. Giordani et al
    ., High-dimensional single-cell cartography reveals novel skeletal muscle-resident cell populations. Mol. Cell 74, 609–621.e6 (2019).
    OpenUrlCrossRefPubMed
  53. ↵
    1. A. J. De Micheli et al
    ., Single-cell analysis of the muscle stem cell hierarchy identifies heterotypic communication signals involved in skeletal muscle regeneration. Cell Rep. 30, 3583–3595.e5 (2020).
    OpenUrl
  54. ↵
    1. S. N. Oprescu,
    2. F. Yue,
    3. J. M. Qiu,
    4. L. F. Brito,
    5. S. Kuang
    , Temporal dynamics and heterogeneity of cell populations during skeletal muscle regeneration. iScience 23, 100993 (2020).
    OpenUrl
  55. ↵
    1. H. B. Xi et al
    ., A human skeletal muscle atlas identifies the trajectories of stem and progenitor cells across development and from human pluripotent stem cells. Cell Stem Cell 27, 181–185 (2020).
    OpenUrl
  56. ↵
    1. A. B. Rubenstein et al
    ., Single-cell transcriptional profiles in human skeletal muscle. Sci. Rep. 10, 229 (2020).
    OpenUrl
  57. ↵
    1. T. Yamada et al
    ., Myoglobin and the regulation of mitochondrial respiratory chain complex IV. J. Physiol. 594, 483–495 (2016).
    OpenUrlCrossRefPubMed
  58. ↵
    1. B. Polla,
    2. G. D’Antona,
    3. R. Bottinelli,
    4. C. Reggiani
    , Respiratory muscle fibres: Specialisation and plasticity. Thorax 59, 808–817 (2004).
    OpenUrlAbstract/FREE Full Text
  59. ↵
    1. F. Kamdar et al
    ., Stem cell-derived cardiomyocytes and beta-adrenergic receptor blockade in Duchenne muscular dystrophy cardiomyopathy. J. Am. Coll. Cardiol. 75, 1159–1174 (2020).
    OpenUrlFREE Full Text
  60. ↵
    1. A. R. Angione,
    2. C. Jiang,
    3. D. Pan,
    4. Y. X. Wang,
    5. S. Kuang
    , PPARdelta regulates satellite cell proliferation and skeletal muscle regeneration. Skelet. Muscle 1, 33 (2011).
    OpenUrlCrossRefPubMed
  61. ↵
    1. C. R. Rathbone,
    2. F. W. Booth,
    3. S. J. Lees
    , Sirt1 increases skeletal muscle precursor cell proliferation. Eur. J. Cell Biol. 88, 35–44 (2009).
    OpenUrlCrossRefPubMed
  62. ↵
    1. D. Jin,
    2. K. Hidaka,
    3. M. Shirai,
    4. T. Morisaki
    , RNA-binding motif protein 24 regulates myogenin expression and promotes myogenic differentiation. Genes Cells 15, 1158–1167 (2010).
    OpenUrlCrossRefPubMed
  63. ↵
    1. N. I. Bower et al
    ., Stac3 is required for myotube formation and myogenic differentiation in vertebrate skeletal muscle. J. Biol. Chem. 287, 43936–43949 (2012).
    OpenUrlAbstract/FREE Full Text
  64. ↵
    1. M. J. Petrany,
    2. T. Song,
    3. S. Sadayappan,
    4. D. P. Millay
    , Myocyte-derived Myomaker expression is required for regenerative fusion but exacerbates membrane instability in dystrophic myofibers. JCI Insight 5, e136095 (2020).
    OpenUrl
  65. ↵
    1. J. W. McGreevy,
    2. C. H. Hakim,
    3. M. A. McIntosh,
    4. D. Duan
    , Animal models of Duchenne muscular dystrophy: From basic mechanisms to gene therapy. Dis. Model. Mech. 8, 195–213 (2015).
    OpenUrlAbstract/FREE Full Text
  66. ↵
    1. Y. Kharraz,
    2. J. Guerra,
    3. P. Pessina,
    4. A. L. Serrano,
    5. P. Munoz-Canoves
    , Understanding the process of fibrosis in Duchenne muscular dystrophy. BioMed Res. Int. 2014, 965631 (2014).
    OpenUrl
  67. ↵
    1. A. Matsakas,
    2. V. Yadav,
    3. S. Lorca,
    4. V. Narkar
    , Muscle ERRgamma mitigates Duchenne muscular dystrophy via metabolic and angiogenic reprogramming. FASEB J. 27, 4004–4016 (2013).
    OpenUrlCrossRefPubMed
  68. ↵
    1. T. Stuart et al
    ., Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).
    OpenUrlCrossRefPubMed
  69. ↵
    1. P. L. Stahl et al
    ., Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).
    OpenUrlAbstract/FREE Full Text
  70. ↵
    1. S. G. Rodriques et al
    ., Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).
    OpenUrlAbstract/FREE Full Text
  71. ↵
    1. S. Vickovic et al
    ., High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987–990 (2019).
    OpenUrlCrossRef
  72. ↵
    1. Z. W. Hall,
    2. E. Ralston
    , Nuclear domains in muscle cells. Cell 59, 771–772 (1989).
    OpenUrlCrossRefPubMed
  73. ↵
    1. G. K. Pavlath,
    2. K. Rich,
    3. S. G. Webster,
    4. H. M. Blau
    , Localization of muscle gene products in nuclear domains. Nature 337, 570–573 (1989).
    OpenUrlCrossRefPubMed
  74. ↵
    1. C. Long et al
    ., Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science 345, 1184–1188 (2014).
    OpenUrlAbstract/FREE Full Text
  75. ↵
    1. C. Long et al
    ., Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351, 400–403 (2016).
    OpenUrlAbstract/FREE Full Text
  76. ↵
    1. C. A. Schneider,
    2. W. S. Rasband,
    3. K. W. Eliceiri
    , NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
    OpenUrlCrossRefPubMed
  77. ↵
    1. C. A. Makarewich et al
    ., The DWORF micropeptide enhances contractility and prevents heart failure in a mouse model of dilated cardiomyopathy. eLife 7, e38319 (2018).
    OpenUrlCrossRef
  78. ↵
    1. Z. Wang et al
    ., Mechanistic basis of neonatal heart regeneration revealed by transcriptome and histone modification profiling. Proc. Natl. Acad. Sci. U.S.A. 116, 18455–18465 (2019).
    OpenUrlAbstract/FREE Full Text
  79. ↵
    1. M. Cui et al
    ., Dynamic transcriptional responses to injury of regenerative and non-regenerative cardiomyocytes revealed by single-nucleus RNA sequencing. Dev. Cell 53, 102–116.e8 (2020).
    OpenUrl
  80. ↵
    1. M. D. Young,
    2. S. Behjati
    , SoupX removes ambient RNA contamination from droplet based single-cell RNA sequencing data. bioRxiv:doi:10.1101/303727 (3 February 2020).
    OpenUrlAbstract/FREE Full Text
  81. ↵
    1. A. Butler,
    2. P. Hoffman,
    3. P. Smibert,
    4. E. Papalexi,
    5. R. Satija
    , Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
    OpenUrlCrossRefPubMed
  82. ↵
    1. Y. Zhou et al
    ., Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).
    OpenUrlCrossRefPubMed
  83. ↵
    1. R. Janky et al.
    , iRegulon: from a gene list to a gene regulatory network using large motif and track collections. PLoS Comput. Biol. 10, e1003731 (2014).
    OpenUrlCrossRefPubMed
  84. ↵
    1. D. Kim,
    2. B. Langmead,
    3. S. L. Salzberg
    , HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).
    OpenUrlCrossRefPubMed
  85. ↵
    1. Y. Liao,
    2. G. K. Smyth,
    3. W. Shi
    , featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
    OpenUrlCrossRefPubMed
  86. ↵
    1. M. D. Robinson,
    2. D. J. McCarthy,
    3. G. K. Smyth
    , edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
    OpenUrlCrossRefPubMed

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

Subscribers, for more details, please visit our Subscriptions FAQ.

Please click here to log into the PNAS submission website.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Degenerative and regenerative pathways underlying Duchenne muscular dystrophy revealed by single-nucleus RNA sequencing
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Degenerative and regenerative pathways underlying Duchenne muscular dystrophy revealed by single-nucleus RNA sequencing
Francesco Chemello, Zhaoning Wang, Hui Li, John R. McAnally, Ning Liu, Rhonda Bassel-Duby, Eric N. Olson
Proceedings of the National Academy of Sciences Nov 2020, 117 (47) 29691-29701; DOI: 10.1073/pnas.2018391117

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Degenerative and regenerative pathways underlying Duchenne muscular dystrophy revealed by single-nucleus RNA sequencing
Francesco Chemello, Zhaoning Wang, Hui Li, John R. McAnally, Ning Liu, Rhonda Bassel-Duby, Eric N. Olson
Proceedings of the National Academy of Sciences Nov 2020, 117 (47) 29691-29701; DOI: 10.1073/pnas.2018391117
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley

Article Classifications

  • Biological Sciences
  • Cell Biology

See related content:

  • Decoding DMD transcriptional networks using single‐nucleus RNA sequencing
    - Dec 02, 2020
Proceedings of the National Academy of Sciences: 117 (47)
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Concluding Remarks
    • Materials and Methods
    • Statistics and Data Availability.
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Model of the Amazon forest
News Feature: A sea in the Amazon
Did the Caribbean sweep into the western Amazon millions of years ago, shaping the region’s rich biodiversity?
Image credit: Tacio Cordeiro Bicudo (University of São Paulo, São Paulo, Brazil), Victor Sacek (University of São Paulo, São Paulo, Brazil), and Lucy Reading-Ikkanda (artist).
Syrian archaeological site
Journal Club: In Mesopotamia, early cities may have faltered before climate-driven collapse
Settlements 4,200 years ago may have suffered from overpopulation before drought and lower temperatures ultimately made them unsustainable.
Image credit: Andrea Ricci.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Birds nestling on tree branches
Parent–offspring conflict in songbird fledging
Some songbird parents might improve their own fitness by manipulating their offspring into leaving the nest early, at the cost of fledgling survival, a study finds.
Image credit: Gil Eckrich (photographer).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490