Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Selection on phenotypic plasticity favors thermal canalization

View ORCID ProfileErik I. Svensson, View ORCID ProfileMiguel Gomez-Llano, and View ORCID ProfileJohn T. Waller
PNAS November 24, 2020 117 (47) 29767-29774; first published November 9, 2020; https://doi.org/10.1073/pnas.2012454117
Erik I. Svensson
aDepartment of Biology, Lund University, SE-223 62 Lund, Sweden;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Erik I. Svensson
  • For correspondence: erik.svensson@biol.lu.se
Miguel Gomez-Llano
aDepartment of Biology, Lund University, SE-223 62 Lund, Sweden;
bDepartment of Biological Sciences, University of Arkansas, Fayetteville, AR 72701;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Miguel Gomez-Llano
John T. Waller
aDepartment of Biology, Lund University, SE-223 62 Lund, Sweden;
cGlobal Biodiversity Information Facility, GBIF Secretariat, DK-2100 Copenhagen Ø, Denmark
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for John T. Waller
  1. Edited by Nils Christian Stenseth, University of Oslo, Oslo, Norway, and approved October 14, 2020 (received for review June 17, 2020)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

Organisms are increasingly challenged by increasing temperatures due to climate change. In insects, body temperatures are strongly affected by ambient temperatures, and insects are therefore expected to suffer increasingly from heat stress, potentially reducing survival and reproductive success leading to elevated extinction risks. We investigated how ambient temperature affected fitness in two insect species in the temperate zone. Male and female survivorship benefitted more from low temperatures than did reproductive success, which increased with higher temperatures, revealing a thermal conflict between fitness components. Male body temperature plasticity reduced survival, and natural and sexual selection operated on such thermal plasticity. Our results reveal the negative consequences of thermal plasticity and show that these insects have limited ability to buffer heat stress.

Abstract

Climate change affects organisms worldwide with profound ecological and evolutionary consequences, often increasing population extinction risk. Climatic factors can increase the strength, variability, or direction of natural selection on phenotypic traits, potentially driving adaptive evolution. Phenotypic plasticity in relation to temperature can allow organisms to maintain fitness in response to increasing temperatures, thereby “buying time” for subsequent genetic adaptation and promoting evolutionary rescue. Although many studies have shown that organisms respond plastically to increasing temperatures, it is unclear if such thermal plasticity is adaptive. Moreover, we know little about how natural and sexual selection operate on thermal reaction norms, reflecting such plasticity. Here, we investigate how natural and sexual selection shape phenotypic plasticity in two congeneric and phenotypically similar sympatric insect species. We show that the thermal optima for longevity and mating success differ, suggesting temperature-dependent trade-offs between survival and reproduction in both sexes. Males in these species have similar thermal reaction norm slopes but have diverged in baseline body temperature (intercepts), being higher for the more northern species. Natural selection favored reduced thermal reaction norm slopes at high ambient temperatures, suggesting that the current level of thermal plasticity is maladaptive in the context of anthropogenic climate change and that selection now promotes thermal canalization and robustness. Our results show that ectothermic animals also at high latitudes can suffer from overheating and challenge the common view of phenotypic plasticity as being beneficial in harsh and novel environments.

  • canalization
  • insects
  • phenotypic plasticity
  • sexual selection
  • thermal adaptation

Footnotes

  • ↵1To whom correspondence may be addressed. Email: erik.svensson{at}biol.lu.se.
  • Author contributions: E.I.S. and J.T.W. designed research; E.I.S., M.G.-L., and J.T.W. performed research; E.I.S., M.G.-L., and J.T.W. contributed new reagents/analytic tools; M.G.-L. and J.T.W. analyzed data; and E.I.S., M.G.-L., and J.T.W. wrote the paper.

  • The authors declare no competing interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2012454117/-/DCSupplemental.

Data Availability.

Anonymized phenotypic data from natural insect populations have been deposited in the Dryad Digital Data Repository (https://datadryad.org/stash/dataset/doi:10.5061/dryad.bk3j9kd98) (68). All study data are included in the article and supporting information.

Published under the PNAS license.

View Full Text

References

  1. 1.↵
    1. B. Sinervo et al
    ., Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010).
    OpenUrlAbstract/FREE Full Text
  2. 2.↵
    1. J. J. Wiens
    , Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).
    OpenUrlCrossRefPubMed
  3. 3.↵
    1. A. J. Suggitt et al
    ., Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Chang. 8, 713–717 (2018).
    OpenUrl
  4. 4.↵
    1. A. M. Siepielski et al
    ., Precipitation drives global variation in natural selection. Science 355, 959–962 (2017).
    OpenUrlAbstract/FREE Full Text
  5. 5.↵
    1. M. L. Logan,
    2. R. M. Cox,
    3. R. Calsbeek
    , Natural selection on thermal performance in a novel thermal environment. Proc. Natl. Acad. Sci. U.S.A. 111, 14165–14169 (2014).
    OpenUrlAbstract/FREE Full Text
  6. 6.↵
    1. M. J. Angiletta
    , Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, 2009).
  7. 7.↵
    1. C. A. Deutsch et al
    ., Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. U.S.A. 105, 6668–6672 (2008).
    OpenUrlAbstract/FREE Full Text
  8. 8.↵
    1. A. A. Hoffmann,
    2. R. J. Hallas,
    3. J. A. Dean,
    4. M. Schiffer
    , Low potential for climatic stress adaptation in a rainforest Drosophila species. Science 301, 100–102 (2003).
    OpenUrlAbstract/FREE Full Text
  9. 9.↵
    1. V. Kellermann,
    2. B. van Heerwaarden,
    3. C. M. Sgrò,
    4. A. A. Hoffmann
    , Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science 325, 1244–1246 (2009).
    OpenUrlAbstract/FREE Full Text
  10. 10.↵
    1. J. M. Sunday et al
    ., Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl. Acad. Sci. U.S.A. 111, 5610–5615 (2014).
    OpenUrlAbstract/FREE Full Text
  11. 11.↵
    1. B. C. Lister,
    2. A. Garcia
    , Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl. Acad. Sci. U.S.A. 115, E10397–E10406 (2018).
    OpenUrlAbstract/FREE Full Text
  12. 12.↵
    1. V. Kellermann et al
    ., Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proc. Natl. Acad. Sci. U.S.A. 109, 16228–16233 (2012).
    OpenUrlAbstract/FREE Full Text
  13. 13.↵
    1. M. P. Moore,
    2. C. Lis,
    3. I. Gherghel,
    4. R. A. Martin
    , Temperature shapes the costs, benefits and geographic diversification of sexual coloration in a dragonfly. Ecol. Lett. 22, 437–446 (2019).
    OpenUrl
  14. 14.↵
    1. G. Bell
    , Evolutionary rescue. Annu. Rev. Ecol. Evol. Syst. 48, 605–627 (2017).
    OpenUrl
  15. 15.↵
    1. R. Lande
    , Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J. Evol. Biol. 22, 1435–1446 (2009).
    OpenUrlCrossRefPubMed
  16. 16.↵
    1. L. M. Chevin,
    2. R. Lande,
    3. G. M. Mace
    , Adaptation, plasticity, and extinction in a changing environment: Towards a predictive theory. PLoS Biol. 8, e1000357 (2010).
    OpenUrlCrossRefPubMed
  17. 17.↵
    1. R. J. Fox,
    2. J. M. Donelson,
    3. C. Schunter,
    4. T. Ravasi,
    5. J. D. Gaitán-Espitia
    , Beyond buying time: The role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180174 (2019).
    OpenUrlCrossRef
  18. 18.↵
    1. L. M. Chevin,
    2. R. Gallet,
    3. R. Gomulkiewicz,
    4. R. D. Holt,
    5. S. Fellous
    , Phenotypic plasticity in evolutionary rescue experiments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120089 (2013).
    OpenUrlCrossRefPubMed
  19. 19.↵
    1. A. Charmantier et al
    ., Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803 (2008).
    OpenUrlAbstract/FREE Full Text
  20. 20.↵
    1. V. Radchuk et al
    ., Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 3109 (2019).
    OpenUrlCrossRef
  21. 21.↵
    1. C. K. Ghalambor et al
    ., Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature 525, 372–375 (2015).
    OpenUrlCrossRefPubMed
  22. 22.↵
    1. M. L. Cenzer
    , Maladaptive plasticity masks the effects of natural selection in the red-shouldered soapberry bug. Am. Nat. 190, 521–533 (2017).
    OpenUrlCrossRef
  23. 23.↵
    1. R. Radersma,
    2. D. W. A. Noble,
    3. T. Uller
    , Plasticity leaves a phenotypic signature during local adaptation. Evol. Lett. 4, 360–370 (2020).
    OpenUrl
  24. 24.↵
    1. M. A. Stamp,
    2. J. D. Hadfield
    , The relative importance of plasticity versus genetic differentiation in explaining between population differences; a meta-analysis. Ecol. Lett. 23, 1432–1441 (2020).
    OpenUrl
  25. 25.↵
    1. P. A. Arnold,
    2. A. B. Nicotra,
    3. L. E. B. Kruuk
    , Sparse evidence for selection on phenotypic plasticity in response to temperature. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180185 (2019).
    OpenUrlCrossRef
  26. 26.↵
    1. J. M. Parrett,
    2. R. J. Knell
    , The effect of sexual selection on adaptation and extinction under increasing temperatures. Proc. Biol. Sci. 285, 20180303 (2018).
    OpenUrlCrossRefPubMed
  27. 27.↵
    1. E. I. Svensson,
    2. J. T. Waller
    , Ecology and sexual selection: Evolution of wing pigmentation in calopterygid damselflies in relation to latitude, sexual dimorphism, and speciation. Am. Nat. 182, E174–E195 (2013).
    OpenUrlCrossRefPubMed
  28. 28.↵
    1. H. J. Dumont,
    2. J. R. Vanfleteren,
    3. J. F. De Jonckheere,
    4. P. H. H Weekers
    , Phylogenetic relationships, divergence time estimation, and global biogeographic patterns of calopterygoid damselflies (odonata, zygoptera) inferred from ribosomal DNA sequences. Syst. Biol. 54, 347–362 (2005).
    OpenUrlCrossRefPubMed
  29. 29.↵
    1. M. Wellenreuther,
    2. K. W. Larson,
    3. E. I. Svensson
    , Climatic niche divergence or conservatism? Environmental niches and range limits in ecologically similar damselflies. Ecology 93, 1353–1366 (2012).
    OpenUrlCrossRefPubMed
  30. 30.↵
    1. C. Lasne,
    2. S. B. Hangartner,
    3. T. Connallon,
    4. C. M. Sgrò
    , Cross-sex genetic correlations and the evolution of sex-specific local adaptation: insights from classical trait clines in Drosophila melanogaster. Evolution 72, 1317–1327 (2018).
    OpenUrl
  31. 31.↵
    1. A. M. F. Harts,
    2. L. E. Schwanz,
    3. H. Kokko
    , Demography can favour female-advantageous alleles. Proc. Biol. Sci. 281, 20140005 (2014).
    OpenUrlCrossRefPubMed
  32. 32.↵
    1. E. I. Svensson et al
    ., Sex differences in local adaptation: What can we learn from reciprocal transplant experiments? Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 20170420 (2018).
    OpenUrlCrossRefPubMed
  33. 33.↵
    1. G. J. Tattersall,
    2. V. Cadena
    , Insights into animal temperature adaptations revealed through thermal imaging. Imaging Sci. J. 58, 261–268 (2010).
    OpenUrl
  34. 34.↵
    1. B. Karlsson,
    2. C. Wiklund
    , Butterfly life history and temperature adaptations; dry open habitats select for increased fecundity and longevity. J. Anim. Ecol. 74, 99–104 (2005).
    OpenUrlCrossRef
  35. 35.↵
    1. K. Gotthard,
    2. D. Berger,
    3. R. Walters
    , What keeps insects small? Time limitation during oviposition reduces the fecundity benefit of female size in a butterfly. Am. Nat. 169, 768–779 (2007).
    OpenUrlCrossRefPubMed
  36. 36.↵
    1. D. Berger,
    2. R. Walters,
    3. K. Gotthard
    , What limits insect fecundity? Body size- and temperature-dependent egg maturation and oviposition in a butterfly. Funct. Ecol. 22, 523–529 (2008).
    OpenUrl
  37. 37.↵
    1. M. J. Banks,
    2. D. J. Thompson
    , Lifetime reproductive success of females of the damselfly Coenagrion puella. J. Anim. Ecol. 56, 815–832 (1987).
    OpenUrlCrossRef
  38. 38.↵
    1. D. J. Thompson
    , The effects of survival and weather on lifetime egg production in a model damselfly. Ecol. Entomol. 15, 455–462 (1990).
    OpenUrl
  39. 39.↵
    1. M. Saastamoinen,
    2. I. Hanski
    , Genotypic and environmental effects on flight activity and oviposition in the Glanville fritillary butterfly. Am. Nat. 171, 701–712 (2008).
    OpenUrlCrossRefPubMed
  40. 40.↵
    1. G. Arnqvist,
    2. L. Rowe
    , Sexual Conflict (Princeton University Press, 2005).
  41. 41.↵
    1. U. Candolin,
    2. J. Heuschele
    , Is sexual selection beneficial during adaptation to environmental change? Trends Ecol. Evol. 23, 446–452 (2008).
    OpenUrlCrossRefPubMed
  42. 42.↵
    1. E. I. Svensson,
    2. T. Connallon
    , How frequency-dependent selection affects population fitness, maladaptation and evolutionary rescue. Evol. Appl. 12, 1243–1258 (2018).
    OpenUrl
  43. 43.↵
    1. S. P. De Lisle,
    2. D. Goedert,
    3. A. M. Reedy,
    4. E. I. Svensson
    , Climatic factors and species range position predict sexually antagonistic selection across taxa. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 20170415 (2018).
    OpenUrlCrossRefPubMed
  44. 44.↵
    1. D. Berger et al
    ., Intralocus sexual conflict and environmental stress. Evolution 68, 2184–2196 (2014).
    OpenUrlPubMed
  45. 45.↵
    1. R. García‐Roa,
    2. V. Chirinos,
    3. P. Carazo
    , The ecology of sexual conflict: Temperature variation in the social environment can drastically modulate male harm to females. Funct. Ecol. 33, 681–692 (2019).
    OpenUrl
  46. 46.↵
    1. R. García-Roa,
    2. F. Garcia-Gonzalez,
    3. D. W. A. Noble,
    4. P. Carazo
    , Temperature as a modulator of sexual selection. Biol. Rev. Camb. Philos. Soc., doi:10.1111/brv.12632 (2020).
    OpenUrlCrossRef
  47. 47.↵
    1. E. I. Svensson,
    2. B. Willink,
    3. M. C. Duryea,
    4. L. T. Lancaster
    , Temperature drives pre-reproductive selection and shapes the biogeography of a female polymorphism. Ecol. Lett. 23, 149–159 (2020).
    OpenUrl
  48. 48.↵
    1. M. E. Dillon,
    2. G. Wang,
    3. R. B. Huey
    , Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).
    OpenUrlCrossRefPubMed
  49. 49.↵
    1. S. L. Chown,
    2. J. G. Sørensen,
    3. J. S. Terblanche
    , Water loss in insects: An environmental change perspective. J. Insect Physiol. 57, 1070–1084 (2011).
    OpenUrlCrossRefPubMed
  50. 50.↵
    1. B. S. Walsh et al
    ., The impact of climate change on fertility. Trends Ecol. Evol. 34, 249–259 (2019).
    OpenUrl
  51. 51.↵
    1. Y. Tsubaki,
    2. Y. Samejima
    , Hot males live fast and die young: Habitat segregation, reproductive output, and lifespan of sympatric Mnais damselflies. Behav. Ecol. Sociobiol. 70, 725–732 (2016).
    OpenUrl
  52. 52.↵
    1. J. Waller,
    2. E. I. Svensson
    , The measurement of selection when detection is imperfect: How good are naive methods? Methods Ecol. Evol. 7, 538–548 (2016).
    OpenUrl
  53. 53.↵
    1. E. I. Svensson,
    2. L. Kristoffersen,
    3. K. Oskarsson,
    4. S. Bensch
    , Molecular population divergence and sexual selection on morphology in the banded demoiselle (Calopteryx splendens). Heredity 93, 423–433 (2004).
    OpenUrlCrossRefPubMed
  54. 54.↵
    1. E. I. Svensson,
    2. F. Eroukhmanoff,
    3. M. Friberg
    , Effects of natural and sexual selection on adaptive population divergence and premating isolation in a damselfly. Evolution 60, 1242–1253 (2006).
    OpenUrlCrossRefPubMed
  55. 55.↵
    1. E. I. Svensson,
    2. M. Friberg
    , Selective predation on wing morphology in sympatric damselflies. Am. Nat. 170, 101–112 (2007).
    OpenUrlCrossRefPubMed
  56. 56.↵
    1. E. I. Svensson,
    2. K. Karlsson,
    3. M. Friberg,
    4. F. Eroukhmanoff
    , Gender differences in species recognition and the evolution of asymmetric sexual isolation. Curr. Biol. 17, 1943–1947 (2007).
    OpenUrlCrossRefPubMed
  57. 57.↵
    1. E. I. Svensson,
    2. F. Eroukhmanoff,
    3. K. Karlsson,
    4. A. Runemark,
    5. A. Brodin
    , A role for learning in population divergence of mate preferences. Evolution 64, 3101–3113 (2010).
    OpenUrlCrossRefPubMed
  58. 58.↵
    1. E. I. Svensson,
    2. A. Runemark,
    3. M. N. Verzijden,
    4. M. Wellenreuther
    , Sex differences in developmental plasticity and canalization shape population divergence in mate preferences. Proc. Biol. Sci. 281, 20141636 (2014).
    OpenUrlCrossRefPubMed
  59. 59.↵
    1. E. I. Svensson,
    2. A. Nordén,
    3. J. T. Waller,
    4. A. Runemark
    , Linking intra- and interspecific assortative mating: Consequences for asymmetric sexual isolation. Evolution 70, 1165–1179 (2016).
    OpenUrlCrossRef
  60. 60.↵
    1. P. S. Corbet
    , Dragonflies: Behaviour and Ecology of Odonata (Harley Books, 1999).
  61. 61.↵
    1. Y. Tsubaki,
    2. Y. Samejima,
    3. M. T. Siva-Jothy
    , Damselfly females prefer hot males: Higher courtship success in males in sunspots. Behav. Ecol. Sociobiol. 64, 1547–1554 (2010).
    OpenUrl
  62. 62.↵
    1. R. Lande,
    2. S. J. Arnold
    , The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).
    OpenUrlCrossRefPubMed
  63. 63.↵
    1. N. Katayama,
    2. J. K. Abbott,
    3. J. Kjærandsen,
    4. Y. Takahashi,
    5. E. I. Svensson
    , Sexual selection on wing interference patterns in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 111, 15144–15148 (2014).
    OpenUrlAbstract/FREE Full Text
  64. 64.↵
    1. D. Bates,
    2. M. Mächler,
    3. B. Bolker,
    4. S. Walker
    , Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    OpenUrlCrossRefPubMed
  65. 65.↵
    1. W. N. Venables,
    2. B. D. Ripley
    , Modern Applied Statistics with S (Springer, ed. 4, 2002).
  66. 66.↵
    1. S. N. Wood
    , Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).
    OpenUrlCrossRefPubMed
  67. 67.↵
    1. R Development Core Team
    , R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2019).
  68. 68.↵
    1. E. I. Svensson,
    2. M. Gomez-Llano,
    3. J. T. Waller
    , Selection on phenotypic plasticity favors thermal canalization. Dryad. https://doi.org/10.5061/dryad.bk3j9kd98. Deposited 30 October 2020.

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

Subscribers, for more details, please visit our Subscriptions FAQ.

Please click here to log into the PNAS submission website.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Selection on phenotypic plasticity favors thermal canalization
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Selection on phenotypic plasticity favors thermal canalization
Erik I. Svensson, Miguel Gomez-Llano, John T. Waller
Proceedings of the National Academy of Sciences Nov 2020, 117 (47) 29767-29774; DOI: 10.1073/pnas.2012454117

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Selection on phenotypic plasticity favors thermal canalization
Erik I. Svensson, Miguel Gomez-Llano, John T. Waller
Proceedings of the National Academy of Sciences Nov 2020, 117 (47) 29767-29774; DOI: 10.1073/pnas.2012454117
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 117 (47)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Biological Sciences
  • Evolution

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Methods
    • Data Availability.
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Surgeons hands during surgery
Inner Workings: Advances in infectious disease treatment promise to expand the pool of donor organs
Despite myriad challenges, clinicians see room for progress.
Image credit: Shutterstock/David Tadevosian.
Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Double helix
Journal Club: Noncoding DNA shown to underlie function, cause limb malformations
Using CRISPR, researchers showed that a region some used to label “junk DNA” has a major role in a rare genetic disorder.
Image credit: Nathan Devery.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Multi-color molecular model
Enzymatic breakdown of PET plastic
A study demonstrates how two enzymes—MHETase and PETase—work synergistically to depolymerize the plastic pollutant PET.
Image credit: Aaron McGeehan (artist).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490