Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Dynamics of RNA polymerase II and elongation factor Spt4/5 recruitment during activator-dependent transcription

View ORCID ProfileGrace A. Rosen, View ORCID ProfileInwha Baek, Larry J. Friedman, View ORCID ProfileYoo Jin Joo, View ORCID ProfileStephen Buratowski, and View ORCID ProfileJeff Gelles
PNAS December 22, 2020 117 (51) 32348-32357; first published December 8, 2020; https://doi.org/10.1073/pnas.2011224117
Grace A. Rosen
aDepartment of Biochemistry, Brandeis University, Waltham, MA 02454;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Grace A. Rosen
Inwha Baek
bDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Inwha Baek
Larry J. Friedman
aDepartment of Biochemistry, Brandeis University, Waltham, MA 02454;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yoo Jin Joo
bDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yoo Jin Joo
Stephen Buratowski
bDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Stephen Buratowski
  • For correspondence: steveb@hms.harvard.edu gelles@brandeis.edu
Jeff Gelles
aDepartment of Biochemistry, Brandeis University, Waltham, MA 02454;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jeff Gelles
  • For correspondence: steveb@hms.harvard.edu gelles@brandeis.edu
  1. Edited by Taekjip Ha, Johns Hopkins University, Baltimore, MD, and approved November 4, 2020 (received for review June 1, 2020)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

The synthesis of a eukaryotic messenger RNA molecule involves the association of RNA polymerase and dozens of accessory proteins on DNA. We used differently colored fluorescent dyes to tag DNA, RNA polymerase II, and the elongation factor Spt4/5 in yeast nuclear extract and then observed the assembly and dynamics of individual molecules of the proteins with single DNA molecules by microscopy. The observations quantitatively define an overall pathway by which transcription complexes form and evolve during activator-dependent transcription. They also suggest how Spt4/5 dynamics might promote efficient RNA production.

Abstract

In eukaryotes, RNA polymerase II (RNApII) transcribes messenger RNA from template DNA. Decades of experiments have identified the proteins needed for transcription activation, initiation complex assembly, and productive elongation. However, the dynamics of recruitment of these proteins to transcription complexes, and of the transitions between these steps, are poorly understood. We used multiwavelength single-molecule fluorescence microscopy to directly image and quantitate these dynamics in a budding yeast nuclear extract that reconstitutes activator-dependent transcription in vitro. A strong activator (Gal4-VP16) greatly stimulated reversible binding of individual RNApII molecules to template DNA. Binding of labeled elongation factor Spt4/5 to DNA typically followed RNApII binding, was NTP dependent, and was correlated with association of mRNA binding protein Hek2, demonstrating specificity of Spt4/5 binding to elongation complexes. Quantitative kinetic modeling shows that only a fraction of RNApII binding events are productive and implies a rate-limiting step, probably associated with recruitment of general transcription factors, needed to assemble a transcription-competent preinitiation complex at the promoter. Spt4/5 association with transcription complexes was slowly reversible, with DNA-bound RNApII molecules sometimes binding and releasing Spt4/5 multiple times. The average Spt4/5 residence time was of similar magnitude to the time required to transcribe an average length yeast gene. These dynamics suggest that a single Spt4/5 molecule remains associated during a typical transcription event, yet can dissociate from RNApII to allow disassembly of abnormally long-lived (i.e., stalled) elongation complexes.

  • CoSMoS
  • Saccharomyces cerevisiae
  • Gal4-VP16

Footnotes

  • ↵1G.A.R. and I.B. contributed equally to this work.

  • ↵2To whom correspondence may be addressed. Email: steveb{at}hms.harvard.edu or gelles{at}brandeis.edu.
  • Author contributions: G.A.R., I.B., L.J.F., Y.J.J., S.B., and J.G. designed research; G.A.R., I.B., L.J.F., Y.J.J., S.B., and J.G. performed research; G.A.R., I.B., L.J.F., Y.J.J., S.B., and J.G. analyzed data; and G.A.R., I.B., L.J.F., S.B., and J.G. wrote the paper.

  • The authors declare no competing interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2011224117/-/DCSupplemental.

Data Availability.

Source data for the single-molecule experiments are provided as “interval” files that can be read and manipulated by the Matlab program imscroll, which is publicly available in GitHub: https://github.com/gelles-brandeis/CoSMoS_Analysis. The source data are archived in Zenodo (DOI: 10.5281/zenodo.4065399).

Published under the PNAS license.

View Full Text

References

  1. ↵
    1. M. C. Thomas,
    2. C. M. Chiang
    , The general transcription machinery and general cofactors. Crit. Rev. Biochem. Mol. Biol. 41, 105–178 (2006).
    OpenUrlCrossRefPubMed
  2. ↵
    1. T. W. Sikorski,
    2. S. Buratowski
    , The basal initiation machinery: Beyond the general trancription factors. Curr. Opin. Chem. Biol. 21, 344–351 (2010).
    OpenUrl
  3. ↵
    1. D. S. Luse
    , The RNA polymerase II preinitiation complex. Through what pathway is the complex assembled? Transcription 5, e27050 (2014).
    OpenUrlCrossRef
  4. ↵
    1. A. Mayer et al
    ., Uniform transitions of the general RNA polymerase II transcription complex. Nat. Struct. Mol. Biol. 17, 1272–1278 (2010).
    OpenUrlCrossRefPubMed
  5. ↵
    1. S. M. Vos et al
    ., Structure of activated transcription complex Pol II-DSIF-PAF-SPT6. Nature 560, 607–612 (2018).
    OpenUrlCrossRefPubMed
  6. ↵
    1. F. Werner
    , A nexus for gene expression-molecular mechanisms of Spt5 and NusG in the three domains of life. J. Mol. Biol. 417, 13–27 (2012).
    OpenUrlCrossRefPubMed
  7. ↵
    1. T. Wada et al
    ., DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. 12, 343–356 (1998).
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. A. Morillon et al
    ., Isw1 chromatin remodeling ATPase coordinates transcription elongation and termination by RNA polymerase II. Cell 115, 425–435 (2003).
    OpenUrlCrossRefPubMed
  9. ↵
    1. T. K. Quan,
    2. G. A. Hartzog
    , Histone H3K4 and K36 methylation, Chd1 and Rpd3S oppose the functions of Saccharomyces cerevisiae Spt4-Spt5 in transcription. Genetics 184, 321–334 (2010).
    OpenUrlAbstract/FREE Full Text
  10. ↵
    1. G. T. Booth,
    2. I. X. Wang,
    3. V. G. Cheung,
    4. J. T. Lis
    , Divergence of a conserved elongation factor and transcription regulation in budding and fission yeast. Genome Res. 26, 799–811 (2016).
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. L. Viladevall et al
    ., TFIIH and P-TEFb coordinate transcription with capping enzyme recruitment at specific genes in fission yeast. Mol. Cell 33, 738–751 (2009).
    OpenUrlCrossRefPubMed
  12. ↵
    1. A. Hirtreiter et al
    ., Spt4/5 stimulates transcription elongation through the RNA polymerase clamp coiled-coil motif. Nucleic Acids Res. 38, 4040–4051 (2010).
    OpenUrlCrossRefPubMed
  13. ↵
    1. H. Ehara et al
    ., Structure of the complete elongation complex of RNA polymerase II with basal factors. Science 357, 921–924 (2017).
    OpenUrlAbstract/FREE Full Text
  14. ↵
    1. D. L. Lindstrom et al
    ., Dual roles for Spt5 in pre-mRNA processing and transcription elongation revealed by identification of Spt5-associated proteins. Mol. Cell. Biol. 23, 1368–1378 (2003).
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. R. A. Mooney,
    2. K. Schweimer,
    3. P. Rösch,
    4. M. Gottesman,
    5. R. Landick
    , Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators. J. Mol. Biol. 391, 341–358 (2009).
    OpenUrlCrossRefPubMed
  16. ↵
    1. M. Lidschreiber,
    2. K. Leike,
    3. P. Cramer
    , Cap completion and C-terminal repeat domain kinase recruitment underlie the initiation-elongation transition of RNA polymerase II. Mol. Cell. Biol. 33, 3805–3816 (2013).
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. T. W. Sikorski et al
    ., Proteomic analysis demonstrates activator- and chromatin-specific recruitment to promoters. J. Biol. Chem. 287, 35397–35408 (2012).
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. I. Sadowski,
    2. J. Ma,
    3. S. Triezenberg,
    4. M. Ptashne
    , GAL4-VP16 is an unusually potent transcriptional activator. Nature 335, 563–564 (1988).
    OpenUrlCrossRefPubMed
  19. ↵
    1. J. A. Ranish,
    2. N. Yudkovsky,
    3. S. Hahn
    , Intermediates in formation and activity of the RNA polymerase II preinitiation complex: Holoenzyme recruitment and a postrecruitment role for the TATA box and TFIIB. Genes Dev. 13, 49–63 (1999).
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Y. J. Joo,
    2. S. B. Ficarro,
    3. Y. Chun,
    4. J. A. Marto,
    5. S. Buratowski
    , In vitro analysis of RNA polymerase II elongation complex dynamics. Genes Dev. 33, 578–589 (2019).
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. L. J. Friedman,
    2. J. Chung,
    3. J. Gelles
    , Viewing dynamic assembly of molecular complexes by multi-wavelength single-molecule fluorescence. Biophys. J. 91, 1023–1031 (2006).
    OpenUrlCrossRefPubMed
  22. ↵
    1. A. A. Hoskins et al
    ., Ordered and dynamic assembly of single spliceosomes. Science 331, 1289–1295 (2011).
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. J. E. Braun,
    2. L. J. Friedman,
    3. J. Gelles,
    4. M. J. Moore
    , Synergistic assembly of human pre-spliceosomes across introns and exons. eLife 7, e37751 (2018).
    OpenUrl
  24. ↵
    1. S. K. Stumper et al
    ., Delayed inhibition mechanism for secondary channel factor regulation of ribosomal RNA transcription. eLife 8, e40576 (2019).
    OpenUrl
  25. ↵
    1. L. E. Tetone et al
    ., Dynamics of GreB-RNA polymerase interaction allow a proofreading accessory protein to patrol for transcription complexes needing rescue. Proc. Natl. Acad. Sci. U.S.A. 114, E1081–E1090 (2017).
    OpenUrlAbstract/FREE Full Text
  26. ↵
    1. T. T. Harden et al
    ., Bacterial RNA polymerase can retain σ70 throughout transcription. Proc. Natl. Acad. Sci. U.S.A. 113, 602–607 (2016).
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. L. J. Friedman,
    2. J. Gelles
    , Mechanism of transcription initiation at an activator-dependent promoter defined by single-molecule observation. Cell 148, 679–689 (2012).
    OpenUrlCrossRefPubMed
  28. ↵
    1. T. T. Harden et al
    ., Alternative transcription cycle for bacterial RNA polymerase. Nat. Commun. 11, 448 (2020).
    OpenUrlCrossRef
  29. ↵
    1. I. Shcherbakova et al
    ., Alternative spliceosome assembly pathways revealed by single-molecule fluorescence microscopy. Cell Rep. 5, 151–165 (2013).
    OpenUrlCrossRefPubMed
  30. ↵
    1. H. Chen,
    2. D. R. Larson
    , What have single-molecule studies taught us about gene expression? Genes Dev. 30, 1796–1810 (2016).
    OpenUrlAbstract/FREE Full Text
  31. ↵
    1. Z. Zhang,
    2. R. Tjian
    , Measuring dynamics of eukaryotic transcription initiation: Challenges, insights and opportunities. Transcription 9, 159–165 (2018).
    OpenUrl
  32. ↵
    1. A. Keppler et al
    ., A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86–89 (2003).
    OpenUrlCrossRefPubMed
  33. ↵
    1. S. S. Gallagher,
    2. J. E. Sable,
    3. M. P. Sheetz,
    4. V. W. Cornish
    , An in vivo covalent TMP-tag based on proximity-induced reactivity. ACS Chem. Biol. 4, 547–556 (2009).
    OpenUrlCrossRefPubMed
  34. ↵
    1. M. Carey,
    2. Y. S. Lin,
    3. M. R. Green,
    4. M. Ptashne
    , A mechanism for synergistic activation of a mammalian gene by GAL4 derivatives. Nature 345, 361–364 (1990).
    OpenUrlCrossRefPubMed
  35. ↵
    1. P. A. Meyer et al
    ., Structures and functions of the multiple KOW domains of transcription elongation factor Spt5. Mol. Cell. Biol. 35, 3354–3369 (2015).
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. C. Plaschka et al
    ., Transcription initiation complex structures elucidate DNA opening. Nature 533, 353–358 (2016).
    OpenUrlCrossRefPubMed
  37. ↵
    1. K. Murakami et al
    ., Structure of an RNA polymerase II preinitiation complex. Proc. Natl. Acad. Sci. U.S.A. 112, 13543–13548 (2015).
    OpenUrlAbstract/FREE Full Text
  38. ↵
    1. D. Grohmann et al
    ., The initiation factor TFE and the elongation factor Spt4/5 compete for the RNAP clamp during transcription initiation and elongation. Mol. Cell 43, 263–274 (2011).
    OpenUrlCrossRefPubMed
  39. ↵
    1. Y. Hasegawa,
    2. K. Irie,
    3. A. P. Gerber
    , Distinct roles for Khd1p in the localization and expression of bud-localized mRNAs in yeast. RNA 14, 2333–2347 (2008).
    OpenUrlAbstract/FREE Full Text
  40. ↵
    1. Y. Luo,
    2. J. A. North,
    3. S. D. Rose,
    4. M. G. Poirier
    , Nucleosomes accelerate transcription factor dissociation. Nucleic Acids Res. 42, 3017–3027 (2014).
    OpenUrlCrossRefPubMed
  41. ↵
    1. A. E. Horn,
    2. J. F. Kugel,
    3. J. A. Goodrich
    , Single molecule microscopy reveals mechanistic insight into RNA polymerase II preinitiation complex assembly and transcriptional activity. Nucleic Acids Res. 44, 7132–7143 (2016).
    OpenUrlCrossRefPubMed
  42. ↵
    1. E. J. Tomko,
    2. J. Fishburn,
    3. S. Hahn,
    4. E. A. Galburt
    , TFIIH generates a six-base-pair open complex during RNAP II transcription initiation and start-site scanning. Nat. Struct. Mol. Biol. 24, 1139–1145 (2017).
    OpenUrl
  43. ↵
    1. A. Revyakin et al
    ., Transcription initiation by human RNA polymerase II visualized at single-molecule resolution. Genes Dev. 26, 1691–1702 (2012).
    OpenUrlAbstract/FREE Full Text
  44. ↵
    1. Z. Zhang,
    2. A. Revyakin,
    3. J. B. Grimm,
    4. L. D. Lavis,
    5. R. Tjian
    , Single-molecule tracking of the transcription cycle by sub-second RNA detection. eLife 3, e01775 (2014).
    OpenUrlCrossRefPubMed
  45. ↵
    1. Z. Zhang et al
    ., Rapid dynamics of general transcription factor TFIIB binding during preinitiation complex assembly revealed by single-molecule analysis. Genes Dev. 30, 2106–2118 (2016).
    OpenUrlAbstract/FREE Full Text
  46. ↵
    1. F. M. Fazal,
    2. C. A. Meng,
    3. K. Murakami,
    4. R. D. Kornberg,
    5. S. M. Block
    , Real-time observation of the initiation of RNA polymerase II transcription. Nature 525, 274–277 (2015).
    OpenUrlCrossRefPubMed
  47. ↵
    1. K. Murakami et al
    ., Formation and fate of a complete 31-protein RNA polymerase II transcription preinitiation complex. J. Biol. Chem. 288, 6325–6332 (2013).
    OpenUrlAbstract/FREE Full Text
  48. ↵
    1. N. Damodaren et al
    ., Def1 interacts with TFIIH and modulates RNA polymerase II transcription. Proc. Natl. Acad. Sci. U.S.A. 114, 13230–13235 (2017).
    OpenUrlAbstract/FREE Full Text
  49. ↵
    1. R. Fujiwara,
    2. N. Damodaren,
    3. J. E. Wilusz,
    4. K. Murakami
    , The capping enzyme facilitates promoter escape and assembly of a follow-on preinitiation complex for reinitiation. Proc. Natl. Acad. Sci. U.S.A. 116, 22573–22582 (2019).
    OpenUrlAbstract/FREE Full Text
  50. ↵
    1. B. T. Donovan et al
    ., Live-cell imaging reveals the interplay between transcription factors, nucleosomes, and bursting. EMBO J. 38, e100809 (2019).
    OpenUrlAbstract/FREE Full Text
  51. ↵
    1. M. Kim,
    2. S.-H. Ahn,
    3. N. J. Krogan,
    4. J. F. Greenblatt,
    5. S. Buratowski
    , Transitions in RNA polymerase II elongation complexes at the 3′ ends of genes. EMBO J. 23, 354–364 (2004).
    OpenUrlAbstract/FREE Full Text
  52. ↵
    1. F. Miura et al
    ., Absolute quantification of the budding yeast transcriptome by means of competitive PCR between genomic and complementary DNAs. BMC Genomics 9, 574 (2008).
    OpenUrlCrossRefPubMed
  53. ↵
    1. D. Zenklusen,
    2. D. R. Larson,
    3. R. H. Singer
    , Single-RNA counting reveals alternative modes of gene expression in yeast. Nat. Struct. Mol. Biol. 15, 1263–1271 (2008).
    OpenUrlCrossRefPubMed
  54. ↵
    1. P. B. Mason,
    2. K. Struhl
    , Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo. Mol. Cell 17, 831–840 (2005).
    OpenUrlCrossRefPubMed
  55. ↵
    1. P. Cramer
    , Organization and regulation of gene transcription. Nature 573, 45–54 (2019).
    OpenUrl
  56. ↵
    1. A.-M. Ladouceur et al
    ., Clusters of bacterial RNA polymerase are biomolecular condensates that assemble through liquid-liquid phase separation. Proc. Natl. Acad. Sci. U.S.A. 117, 18540–18549 (2020).
    OpenUrlAbstract/FREE Full Text
  57. ↵
    1. V. Arluison,
    2. F. Wien
    1. R. A. Haraszti,
    2. J. E. Braun
    , “Preparation of SNAPf-beads for colocalization single-molecule spectroscopy (CoSMoS) of RNA-protein complexes” in RNA Spectroscopy: Methods and Protocols, V. Arluison, F. Wien, Eds. (Methods in Molecular Biology, Springer, 2020), pp. 17–22.
  58. ↵
    1. E. Giniger,
    2. S. M. Varnum,
    3. M. Ptashne
    , Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell 40, 767–774 (1985).
    OpenUrlCrossRefPubMed
  59. ↵
    1. D. J. Crawford,
    2. A. A. Hoskins,
    3. L. J. Friedman,
    4. J. Gelles,
    5. M. J. Moore
    , Visualizing the splicing of single pre-mRNA molecules in whole cell extract. RNA 14, 170–179 (2008).
    OpenUrlAbstract/FREE Full Text
  60. ↵
    1. L. J. Friedman,
    2. J. Gelles
    , Multi-wavelength single-molecule fluorescence analysis of transcription mechanisms. Methods 86, 27–36 (2015).
    OpenUrlCrossRefPubMed
  61. ↵
    1. R. Dave,
    2. D. S. Terry,
    3. J. B. Munro,
    4. S. C. Blanchard
    , Mitigating unwanted photophysical processes for improved single-molecule fluorescence imaging. Biophys. J. 96, 2371–2381 (2009).
    OpenUrlCrossRefPubMed

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

Subscribers, for more details, please visit our Subscriptions FAQ.

Please click here to log into the PNAS submission website.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Dynamics of RNA polymerase II and elongation factor Spt4/5 recruitment during activator-dependent transcription
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Dynamics of RNA polymerase II and elongation factor Spt4/5 recruitment during activator-dependent transcription
Grace A. Rosen, Inwha Baek, Larry J. Friedman, Yoo Jin Joo, Stephen Buratowski, Jeff Gelles
Proceedings of the National Academy of Sciences Dec 2020, 117 (51) 32348-32357; DOI: 10.1073/pnas.2011224117

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Dynamics of RNA polymerase II and elongation factor Spt4/5 recruitment during activator-dependent transcription
Grace A. Rosen, Inwha Baek, Larry J. Friedman, Yoo Jin Joo, Stephen Buratowski, Jeff Gelles
Proceedings of the National Academy of Sciences Dec 2020, 117 (51) 32348-32357; DOI: 10.1073/pnas.2011224117
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 117 (51)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Biological Sciences
  • Biochemistry
  • Physical Sciences
  • Biophysics and Computational Biology

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Materials and Methods
    • Data Availability.
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Surgeons hands during surgery
Inner Workings: Advances in infectious disease treatment promise to expand the pool of donor organs
Despite myriad challenges, clinicians see room for progress.
Image credit: Shutterstock/David Tadevosian.
Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Double helix
Journal Club: Noncoding DNA shown to underlie function, cause limb malformations
Using CRISPR, researchers showed that a region some used to label “junk DNA” has a major role in a rare genetic disorder.
Image credit: Nathan Devery.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Multi-color molecular model
Enzymatic breakdown of PET plastic
A study demonstrates how two enzymes—MHETase and PETase—work synergistically to depolymerize the plastic pollutant PET.
Image credit: Aaron McGeehan (artist).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490