Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

Development and validation of a potent and specific inhibitor for the CLC-2 chloride channel

View ORCID ProfileAnna K. Koster, View ORCID ProfileAustin L. Reese, Yuri Kuryshev, Xianlan Wen, View ORCID ProfileKeri A. McKiernan, View ORCID ProfileErin E. Gray, Caiyun Wu, View ORCID ProfileJohn R. Huguenard, View ORCID ProfileMerritt Maduke, and View ORCID ProfileJ. Du Bois
  1. aDepartment of Chemistry, Stanford University, Stanford, CA 94305;
  2. bDepartment of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305;
  3. cDepartment of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305;
  4. dCharles River Laboratories Cleveland, Inc., Cleveland, OH 44128

See allHide authors and affiliations

PNAS December 22, 2020 117 (51) 32711-32721; first published December 4, 2020; https://doi.org/10.1073/pnas.2009977117
Anna K. Koster
aDepartment of Chemistry, Stanford University, Stanford, CA 94305;
bDepartment of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Anna K. Koster
Austin L. Reese
cDepartment of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Austin L. Reese
Yuri Kuryshev
dCharles River Laboratories Cleveland, Inc., Cleveland, OH 44128
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xianlan Wen
bDepartment of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Keri A. McKiernan
aDepartment of Chemistry, Stanford University, Stanford, CA 94305;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Keri A. McKiernan
Erin E. Gray
aDepartment of Chemistry, Stanford University, Stanford, CA 94305;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Erin E. Gray
Caiyun Wu
dCharles River Laboratories Cleveland, Inc., Cleveland, OH 44128
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John R. Huguenard
cDepartment of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for John R. Huguenard
  • For correspondence: john.huguenard@stanford.edu maduke@stanford.edu jdubois@stanford.edu
Merritt Maduke
bDepartment of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Merritt Maduke
  • For correspondence: john.huguenard@stanford.edu maduke@stanford.edu jdubois@stanford.edu
J. Du Bois
aDepartment of Chemistry, Stanford University, Stanford, CA 94305;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Du Bois
  • For correspondence: john.huguenard@stanford.edu maduke@stanford.edu jdubois@stanford.edu
  1. Edited by Richard W. Aldrich, The University of Texas at Austin, Austin, TX, and approved October 22, 2020 (received for review May 21, 2020)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

The CLC-2 ion channel facilitates selective passage of Cl– ions across cell membranes. In the central nervous system, CLC-2 is expressed in both neurons and glia and is proposed to regulate electrical excitability and ion homeostasis. CLC-2 has been implicated in various central nervous system disorders, including certain types of epilepsy and leukodystrophy. Establishing a causative role for CLC-2 in neuropathologies, however, has been limited by the absence of selective reagents that enable acute and specific channel modulation. Our studies have resulted in the identification of a highly potent, small-molecule inhibitor that enables specific block of CLC-2 Cl– currents in hippocampal brain slices. This precise molecular tool should enable future efforts to identify and treat CLC-2–related disease.

Abstract

CLC-2 is a voltage-gated chloride channel that is widely expressed in mammalian tissues. In the central nervous system, CLC-2 appears in neurons and glia. Studies to define how this channel contributes to normal and pathophysiological function in the central nervous system raise questions that remain unresolved, in part due to the absence of precise pharmacological tools for modulating CLC-2 activity. Herein, we describe the development and optimization of AK-42, a specific small-molecule inhibitor of CLC-2 with nanomolar potency (IC50 = 17 ± 1 nM). AK-42 displays unprecedented selectivity (>1,000-fold) over CLC-1, the closest CLC-2 homolog, and exhibits no off-target engagement against a panel of 61 common channels, receptors, and transporters expressed in brain tissue. Computational docking, validated by mutagenesis and kinetic studies, indicates that AK-42 binds to an extracellular vestibule above the channel pore. In electrophysiological recordings of mouse CA1 hippocampal pyramidal neurons, AK-42 acutely and reversibly inhibits CLC-2 currents; no effect on current is observed on brain slices taken from CLC-2 knockout mice. These results establish AK-42 as a powerful tool for investigating CLC-2 neurophysiology.

  • chloride channel
  • CLC-2
  • inhibitor

Footnotes

  • ↵1To whom correspondence may be addressed. Email: john.huguenard{at}stanford.edu, maduke{at}stanford.edu, or jdubois{at}stanford.edu.
  • Author contributions: A.K.K., A.L.R., Y.K., J.R.H., M.M., and J.D.B. designed research; A.K.K., A.L.R., Y.K., X.W., K.A.M., E.E.G., and C.W. performed research; A.K.K. and E.E.G. contributed new reagents/analytic tools; A.K.K., A.L.R., X.W., J.R.H., M.M., and J.D.B. analyzed data; and A.K.K., M.M., and J.D.B. wrote the paper.

  • Competing interest statement: A.K.K., J.D.B., and M.M. have filed for a patent “Compositions and Methods to Modulate Chloride Ion Channel Activity,” USSN 16/449,021 from the U.S. Patent & Trademark Office, January 16, 2020.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2009977117/-/DCSupplemental.

Data Availability.

All study data are included in the article and supporting information.

Published under the PNAS license.

View Full Text

References

  1. 1.↵
    1. T. J. Jentsch,
    2. M. Pusch
    , CLC chloride channels and transporters: Structure, function, physiology, and disease. Physiol. Rev. 98, 1493–1590 (2018).
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. A. Thiemann,
    2. S. Gründer,
    3. M. Pusch,
    4. T. J. Jentsch
    , A chloride channel widely expressed in epithelial and non-epithelial cells. Nature 356, 57–60 (1992).
    OpenUrlCrossRefPubMed
  3. 3.↵
    1. W. Walz
    , Chloride/anion channels in glial cell membranes. Glia 40, 1–10 (2002).
    OpenUrlCrossRefPubMed
  4. 4.↵
    1. C. S. Wilson,
    2. A. A. Mongin
    , The signaling role for chloride in the bidirectional communication between neurons and astrocytes. Neurosci. Lett. 689, 33–44 (2019).
    OpenUrlCrossRefPubMed
  5. 5.↵
    1. T. Stauber,
    2. T. J. Jentsch
    , Chloride in vesicular trafficking and function. Annu. Rev. Physiol. 75, 453–477 (2013).
    OpenUrlCrossRefPubMed
  6. 6.↵
    1. N. Rahmati,
    2. F. E. Hoebeek,
    3. S. Peter,
    4. C. I. De Zeeuw
    , Chloride homeostasis in neurons with special emphasis on the olivocerebellar system: Differential roles for transporters and channels. Front. Cell. Neurosci. 12, 101 (2018).
    OpenUrl
  7. 7.↵
    1. M. Watanabe,
    2. A. Fukuda
    , Development and regulation of chloride homeostasis in the central nervous system. Front. Cell. Neurosci. 9, 371 (2015).
    OpenUrlPubMed
  8. 8.↵
    1. D. R. Poroca,
    2. R. M. Pelis,
    3. V. M. Chappe
    , ClC channels and transporters: Structure, physiological functions, and implications in human chloride channelopathies. Front. Pharmacol. 8, 151 (2017).
    OpenUrl
  9. 9.↵
    1. M. M. Bi et al
    ., Chloride channelopathies of ClC-2. Int. J. Mol. Sci. 15, 218–249 (2013).
    OpenUrl
  10. 10.↵
    1. F. L. Fernandes-Rosa et al
    ., A gain-of-function mutation in the CLCN2 chloride channel gene causes primary aldosteronism. Nat. Genet. 50, 355–361 (2018).
    OpenUrlCrossRef
  11. 11.↵
    1. U. I. Scholl et al
    ., CLCN2 chloride channel mutations in familial hyperaldosteronism type II. Nat. Genet. 50, 349–354 (2018).
    OpenUrlCrossRef
  12. 12.↵
    1. J. Schewe et al
    ., Elevated aldosterone and blood pressure in a mouse model of familial hyperaldosteronism with ClC-2 mutation. Nat. Commun. 10, 5155 (2019).
    OpenUrl
  13. 13.↵
    1. C. Göppner et al
    ., Pathogenesis of hypertension in a mouse model for human CLCN2 related hyperaldosteronism. Nat. Commun. 10, 4678 (2019).
    OpenUrl
  14. 14.↵
    1. C. Depienne et al
    ., Brain white matter oedema due to ClC-2 chloride channel deficiency: An observational analytical study. Lancet Neurol. 12, 659–668 (2013).
    OpenUrlCrossRefPubMed
  15. 15.↵
    1. D. Di Bella et al
    ., Subclinical leukodystrophy and infertility in a man with a novel homozygous CLCN2 mutation. Neurology 83, 1217–1218 (2014).
    OpenUrlCrossRefPubMed
  16. 16.↵
    1. H. A. Hanagasi et al
    ., Secondary paroxysmal kinesigenic dyskinesia associated with CLCN2 gene mutation. Parkinsonism Relat. Disord. 21, 544–546 (2015).
    OpenUrl
  17. 17.↵
    1. H. Gaitán-Peñas et al
    ., Leukoencephalopathy-causing CLCN2 mutations are associated with impaired Cl- channel function and trafficking. J. Physiol. 595, 6993–7008 (2017).
    OpenUrlCrossRef
  18. 18.↵
    1. B. Zeydan et al
    ., Identification of 3 novel patients with CLCN2-related leukoencephalopathy due to CLCN2 mutations. Eur. Neurol. 78, 125–127 (2017).
    OpenUrl
  19. 19.↵
    1. E. Giorgio et al
    ., A novel homozygous change of CLCN2 (p.His590Pro) is associated with a subclinical form of leukoencephalopathy with ataxia (LKPAT). J. Neurol. Neurosurg. Psychiatry 88, 894–896 (2017).
    OpenUrlFREE Full Text
  20. 20.↵
    1. Z. Guo et al
    ., CLCN2-related leukoencephalopathy: A case report and review of the literature. BMC Neurol. 19, 156 (2019).
    OpenUrl
  21. 21.↵
    1. J. Blanz et al
    ., Leukoencephalopathy upon disruption of the chloride channel ClC-2. J. Neurosci. 27, 6581–6589 (2007).
    OpenUrlAbstract/FREE Full Text
  22. 22.↵
    1. M. R. Bösl et al
    ., Male germ cells and photoreceptors, both dependent on close cell-cell interactions, degenerate upon ClC-2 Cl– channel disruption. EMBO J. 20, 1289–1299 (2001).
    OpenUrlAbstract/FREE Full Text
  23. 23.↵
    1. K. Nehrke et al
    ., Loss of hyperpolarization-activated Cl– current in salivary acinar cells from Clcn2 knockout mice. J. Biol. Chem. 277, 23604–23611 (2002).
    OpenUrlAbstract/FREE Full Text
  24. 24.↵
    1. K. Staley
    , The role of an inwardly rectifying chloride conductance in postsynaptic inhibition. J. Neurophysiol. 72, 273–284 (1994).
    OpenUrlCrossRefPubMed
  25. 25.↵
    1. K. Staley,
    2. R. Smith,
    3. J. Schaack,
    4. C. Wilcox,
    5. T. J. Jentsch
    , Alteration of GABAA receptor function following gene transfer of the CLC-2 chloride channel. Neuron 17, 543–551 (1996).
    OpenUrlCrossRefPubMed
  26. 26.↵
    1. S. Ratté,
    2. S. A. Prescott
    , ClC-2 channels regulate neuronal excitability, not intracellular chloride levels. J. Neurosci. 31, 15838–15843 (2011).
    OpenUrlAbstract/FREE Full Text
  27. 27.↵
    1. C. Földy,
    2. S. H. Lee,
    3. R. J. Morgan,
    4. I. Soltesz
    , Regulation of fast-spiking basket cell synapses by the chloride channel ClC-2. Nat. Neurosci. 13, 1047–1049 (2010).
    OpenUrlCrossRefPubMed
  28. 28.↵
    1. I. Rinke,
    2. J. Artmann,
    3. V. Stein
    , ClC-2 voltage-gated channels constitute part of the background conductance and assist chloride extrusion. J. Neurosci. 30, 4776–4786 (2010).
    OpenUrlAbstract/FREE Full Text
  29. 29.↵
    1. C. Armstrong,
    2. I. Soltesz
    , Basket cell dichotomy in microcircuit function. J. Physiol. 590, 683–694 (2012).
    OpenUrlCrossRefPubMed
  30. 30.↵
    1. T. G. Smart
    , Handling accumulated internal Cl− at inhibitory synapses. Nat. Neurosci. 13, 1043–1044 (2010).
    OpenUrlCrossRefPubMed
  31. 31.↵
    1. D. D’Agostino et al
    ., Mutations and polymorphisms of the CLCN2 gene in idiopathic epilepsy. Neurology 63, 1500–1502 (2004).
    OpenUrl
  32. 32.↵
    1. C. Saint-Martin et al
    ., Two novel CLCN2 mutations accelerating chloride channel deactivation are associated with idiopathic generalized epilepsy. Hum. Mutat. 30, 397–405 (2009).
    OpenUrlCrossRefPubMed
  33. 33.↵
    1. A. Kleefuss-Lie et al
    ., CLCN2 variants in idiopathic generalized epilepsy. Nat. Genet. 41, 954–955 (2009).
    OpenUrlCrossRefPubMed
  34. 34.↵
    1. K. Everett et al
    ., Linkage and mutational analysis of CLCN2 in childhood absence epilepsy. Epilepsy Res. 75, 145–153 (2007).
    OpenUrlCrossRefPubMed
  35. 35.↵
    1. E. Stogmann et al
    ., Mutations in the CLCN2 gene are a rare cause of idiopathic generalized epilepsy syndromes. Neurogenetics 7, 265–268 (2006).
    OpenUrlCrossRefPubMed
  36. 36.↵
    1. M. Bertelli et al
    ., Quantification of chloride channel 2 (CLCN2) gene isoforms in normal versus lesion- and epilepsy-associated brain tissue. Biochim. Biophys. Acta 1772, 15–20 (2007).
    OpenUrlCrossRefPubMed
  37. 37.↵
    1. R. Combi et al
    ., Clinical and genetic familial study of a large cohort of Italian children with idiopathic epilepsy. Brain Res. Bull. 79, 89–96 (2009).
    OpenUrlCrossRefPubMed
  38. 38.↵
    1. M. I. Niemeyer et al
    ., No evidence for a role of CLCN2 variants in idiopathic generalized epilepsy. Nat. Genet. 42, 3 (2010).
    OpenUrlCrossRefPubMed
  39. 39.↵
    1. Sigma-Aldrich, The Handbook of Receptor Classification and Signal Transduction
    (2019), https://www.sigmaaldrich.com/technical-documents/articles/biology/rbi-handbook/ion-channels/chloride-channels.html. Accessed 18 November 2020.
  40. 40.↵
    1. K. S. Suh,
    2. S. H. Yuspa
    , Intracellular chloride channels: Critical mediators of cell viability and potential targets for cancer therapy. Curr. Pharm. Des. 11, 2753–2764 (2005).
    OpenUrlCrossRefPubMed
  41. 41.↵
    1. M. Pusch et al
    ., Mechanisms of block of muscle type CLC chloride channels (Review). Mol. Membr. Biol. 19, 285–292 (2002).
    OpenUrlCrossRefPubMed
  42. 42.↵
    1. Z. I. Cabantchik,
    2. R. Greger
    , Chemical probes for anion transporters of mammalian cell membranes. Am. J. Physiol. 262, C803–C827 (1992).
    OpenUrl
  43. 43.↵
    1. A. Liantonio et al
    ., Molecular switch for CLC-K Cl– channel block/activation: Optimal pharmacophoric requirements towards high-affinity ligands. Proc. Natl. Acad. Sci. U.S.A. 105, 1369–1373 (2008).
    OpenUrlAbstract/FREE Full Text
  44. 44.↵
    1. A. Gradogna,
    2. M. Pusch
    , Molecular pharmacology of kidney and inner ear CLC-K chloride channels. Front. Pharmacol. 1, 130 (2010).
    OpenUrlCrossRefPubMed
  45. 45.↵
    1. A. Liantonio et al
    ., Kidney CLC-K chloride channels inhibitors: Structure-based studies and efficacy in hypertension and associated CLC-K polymorphisms. J. Hypertens. 34, 981–992 (2016).
    OpenUrlCrossRef
  46. 46.↵
    1. A. K. Koster et al
    ., A selective class of inhibitors for the CLC-Ka chloride ion channel. Proc. Natl. Acad. Sci. U.S.A. 115, E4900–E4909 (2018).
    OpenUrlAbstract/FREE Full Text
  47. 47.↵
    1. C. H. Thompson,
    2. C. S. Freeman,
    3. R. J. French,
    4. N. A. McCarty
    , Pharmacological charcterization of GaTx2, a peptide inhibitor of ClC-2 chloride channels. Biophys. J. 96, 470a (2009).
    OpenUrl
  48. 48.↵
    1. S. Clark,
    2. S. E. Jordt,
    3. T. J. Jentsch,
    4. A. Mathie
    , Characterization of the hyperpolarization-activated chloride current in dissociated rat sympathetic neurons. J. Physiol. 506, 665–678 (1998).
    OpenUrlCrossRefPubMed
  49. 49.↵
    1. T. Furukawa,
    2. T. Ogura,
    3. Y. Katayama,
    4. M. Hiraoka
    , Characteristics of rabbit ClC-2 current expressed in Xenopus oocytes and its contribution to volume regulation. Am. J. Physiol. 274, C500–C512 (1998).
    OpenUrlPubMed
  50. 50.↵
    1. S. E. Jordt,
    2. T. J. Jentsch
    , Molecular dissection of gating in the ClC-2 chloride channel. EMBO J. 16, 1582–1592 (1997).
    OpenUrlAbstract/FREE Full Text
  51. 51.↵
    1. L. Zúñiga et al
    ., The voltage-dependent ClC-2 chloride channel has a dual gating mechanism. J. Physiol. 555, 671–682 (2004).
    OpenUrlCrossRefPubMed
  52. 52.↵
    1. A. J. Moeser,
    2. P. K. Nighot,
    3. K. J. Engelke,
    4. R. Ueno,
    5. A. T. Blikslager
    , Recovery of mucosal barrier function in ischemic porcine ileum and colon is stimulated by a novel agonist of the ClC-2 chloride channel, lubiprostone. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G647–G656 (2007).
    OpenUrlCrossRefPubMed
  53. 53.↵
    1. J. Cuppoletti et al
    ., SPI-0211 activates T84 cell chloride transport and recombinant human ClC-2 chloride currents. Am. J. Physiol. Cell Physiol. 287, C1173–C1183 (2004).
    OpenUrlCrossRefPubMed
  54. 54.↵
    1. C. A. Flores
    , ClC-2 and intestinal chloride secretion. Am. J. Physiol. Gastrointest. Liver Physiol. 311, G775 (2016).
    OpenUrlCrossRefPubMed
  55. 55.↵
    1. W. W. Chan,
    2. H. Mashimo
    , Lubiprostone increases small intestinal smooth muscle contractions through a prostaglandin E receptor 1 (EP1)-mediated pathway. J. Neurogastroenterol. Motil. 19, 312–318 (2013).
    OpenUrlCrossRef
  56. 56.↵
    1. Y. Norimatsu,
    2. A. R. Moran,
    3. K. D. MacDonald
    , Lubiprostone activates CFTR, but not ClC-2, via the prostaglandin receptor (EP(4)). Biochem. Biophys. Res. Commun. 426, 374–379 (2012).
    OpenUrlCrossRefPubMed
  57. 57.↵
    1. A. Liantonio et al
    ., Activation and inhibition of kidney CLC-K chloride channels by fenamates. Mol. Pharmacol. 69, 165–173 (2006).
    OpenUrlAbstract/FREE Full Text
  58. 58.↵
    1. E. Jeworutzki et al
    ., GlialCAM, a protein defective in a leukodystrophy, serves as a ClC-2 Cl– channel auxiliary subunit. Neuron 73, 951–961 (2012).
    OpenUrlCrossRefPubMed
  59. 59.↵
    1. J. Besnard et al
    ., Automated design of ligands to polypharmacological profiles. Nature 492, 215–220 (2012).
    OpenUrlCrossRefPubMed
  60. 60.↵
    1. K. A. McKiernan,
    2. A. K. Koster,
    3. M. Maduke,
    4. V. S. Pande
    , Dynamical model of the CLC-2 ion channel reveals conformational changes associated with selectivity-filter gating. PLOS Comput. Biol. 16, e1007530 (2020).
    OpenUrl
  61. 61.↵
    1. E. Park,
    2. E. B. Campbell,
    3. R. MacKinnon
    , Structure of a CLC chloride ion channel by cryo-electron microscopy. Nature 541, 500–505 (2017).
    OpenUrlCrossRefPubMed
  62. 62.↵
    1. D. V. Madison,
    2. R. C. Malenka,
    3. R. A. Nicoll
    , Phorbol esters block a voltage-sensitive chloride current in hippocampal pyramidal cells. Nature 321, 695–697 (1986).
    OpenUrlCrossRefPubMed
  63. 63.↵
    1. R. L. Smith,
    2. G. H. Clayton,
    3. C. L. Wilcox,
    4. K. W. Escudero,
    5. K. J. Staley
    , Differential expression of an inwardly rectifying chloride conductance in rat brain neurons: A potential mechanism for cell-specific modulation of postsynaptic inhibition. J. Neurosci. 15, 4057–4067 (1995).
    OpenUrlAbstract/FREE Full Text
  64. 64.↵
    1. A. Sík,
    2. R. L. Smith,
    3. T. F. Freund
    , Distribution of chloride channel-2-immunoreactive neuronal and astrocytic processes in the hippocampus. Neuroscience 101, 51–65 (2000).
    OpenUrlCrossRefPubMed
  65. 65.↵
    1. R. Mager,
    2. S. Ferroni,
    3. P. Schubert
    , Adenosine modulates a voltage-dependent chloride conductance in cultured hippocampal neurons. Brain Res. 532, 58–62 (1990).
    OpenUrlCrossRefPubMed
  66. 66.↵
    1. E. Park,
    2. R. MacKinnon
    , Structure of the CLC-1 chloride channel from Homo sapiens. eLife 7, e36629 (2018).
    OpenUrlCrossRefPubMed
  67. 67.↵
    1. G. H. Clayton,
    2. K. J. Staley,
    3. C. L. Wilcox,
    4. G. C. Owens,
    5. R. L. Smith
    , Developmental expression of CLC-2 in the rat nervous system. Brain Res. Dev. Brain Res. 108, 307–318 (1998).
    OpenUrlCrossRefPubMed
  68. 68.↵
    1. E. Jeworutzki et al
    ., GlialCAM, a CLC-2 Cl– channel subunit, activates the slow gate of CLC chloride channels. Biophys. J. 107, 1105–1116 (2014).
    OpenUrlCrossRefPubMed
  69. 69.↵
    1. M. C. Maduke,
    2. R. J. Reimer
    , Biochemistry to the rescue: A ClC-2 auxiliary subunit provides a tangible link to leukodystrophy. Neuron 73, 855–857 (2012).
    OpenUrlCrossRefPubMed
  70. 70.↵
    1. M. B. Hoegg-Beiler et al
    ., Disrupting MLC1 and GlialCAM and ClC-2 interactions in leukodystrophy entails glial chloride channel dysfunction. Nat. Commun. 5, 3475 (2014).
    OpenUrlPubMed
  71. 71.↵
    1. S. Sirisi et al
    ., Depolarization causes the formation of a ternary complex between GlialCAM, MLC1 and ClC-2 in astrocytes: Implications in megalencephalic leukoencephalopathy. Hum. Mol. Genet. 26, 2436–2450 (2017).
    OpenUrlCrossRef
  72. 72.↵
    1. J. H. Zhang,
    2. T. D. Chung,
    3. K. R. Oldenburg
    , A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4, 67–73 (1999).
    OpenUrlCrossRefPubMed
  73. 73.↵
    1. M. I. Niemeyer,
    2. L. P. Cid,
    3. Y. R. Yusef,
    4. R. Briones,
    5. F. V. Sepúlveda
    , Voltage-dependent and -independent titration of specific residues accounts for complex gating of a ClC chloride channel by extracellular protons. J. Physiol. 587, 1387–1400 (2009).
    OpenUrlCrossRefPubMed
  74. 74.↵
    1. J. J. De Jesús-Pérez et al
    ., Gating the glutamate gate of CLC-2 chloride channel by pore occupancy. J. Gen. Physiol. 147, 25–37 (2016).
    OpenUrlAbstract/FREE Full Text
  75. 75.↵
    1. J. R. Huguenard,
    2. D. A. Prince
    , Intrathalamic rhythmicity studied in vitro: Nominal T-current modulation causes robust antioscillatory effects. J. Neurosci. 14, 5485–5502 (1994).
    OpenUrlAbstract/FREE Full Text
  76. 76.↵
    1. E. F. Pettersen et al
    ., UCSF chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
    OpenUrlCrossRefPubMed
  77. 77.↵
    1. D. A. Case et al
    ., The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005).
    OpenUrlCrossRefPubMed
  78. 78.↵
    1. W. J. Allen et al
    ., DOCK 6: Impact of new features and current docking performance. J. Comput. Chem. 36, 1132–1156 (2015).
    OpenUrlCrossRefPubMed
  79. 79.↵
    1. E. Harder et al
    ., OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. J. Chem. Theory Comput. 12, 281–296 (2016).
    OpenUrlCrossRefPubMed
  80. 80.↵
    1. J. R. Greenwood,
    2. D. Calkins,
    3. A. P. Sullivan,
    4. J. C. Shelley
    , Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J. Comput. Aided Mol. Des. 24, 591–604 (2010).
    OpenUrlCrossRefPubMed
  81. 81.↵
    1. A. Sali,
    2. T. L. Blundell
    , Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).
    OpenUrlCrossRefPubMed
  82. 82.↵
    1. R. A. Friesner et al
    ., Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 49, 6177–6196 (2006).
    OpenUrlCrossRefPubMed

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

Subscribers, for more details, please visit our Subscriptions FAQ.

Please click here to log into the PNAS submission website.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Development and validation of a potent and specific inhibitor for the CLC-2 chloride channel
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Development and validation of a potent and specific inhibitor for the CLC-2 chloride channel
Anna K. Koster, Austin L. Reese, Yuri Kuryshev, Xianlan Wen, Keri A. McKiernan, Erin E. Gray, Caiyun Wu, John R. Huguenard, Merritt Maduke, J. Du Bois
Proceedings of the National Academy of Sciences Dec 2020, 117 (51) 32711-32721; DOI: 10.1073/pnas.2009977117

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Development and validation of a potent and specific inhibitor for the CLC-2 chloride channel
Anna K. Koster, Austin L. Reese, Yuri Kuryshev, Xianlan Wen, Keri A. McKiernan, Erin E. Gray, Caiyun Wu, John R. Huguenard, Merritt Maduke, J. Du Bois
Proceedings of the National Academy of Sciences Dec 2020, 117 (51) 32711-32721; DOI: 10.1073/pnas.2009977117
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley

Article Classifications

  • Biological Sciences
  • Pharmacology
Proceedings of the National Academy of Sciences: 117 (51)
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Materials and Methods
    • Data Availability.
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Smoke emanates from Japan’s Fukushima nuclear power plant a few days after tsunami damage
Core Concept: Muography offers a new way to see inside a multitude of objects
Muons penetrate much further than X-rays, they do essentially zero damage, and they are provided for free by the cosmos.
Image credit: Science Source/Digital Globe.
Water from a faucet fills a glass.
News Feature: How “forever chemicals” might impair the immune system
Researchers are exploring whether these ubiquitous fluorinated molecules might worsen infections or hamper vaccine effectiveness.
Image credit: Shutterstock/Dmitry Naumov.
Venus flytrap captures a fly.
Journal Club: Venus flytrap mechanism could shed light on how plants sense touch
One protein seems to play a key role in touch sensitivity for flytraps and other meat-eating plants.
Image credit: Shutterstock/Kuttelvaserova Stuchelova.
Illustration of groups of people chatting
Exploring the length of human conversations
Adam Mastroianni and Daniel Gilbert explore why conversations almost never end when people want them to.
Listen
Past PodcastsSubscribe
Horse fossil
Mounted horseback riding in ancient China
A study uncovers early evidence of equestrianism in ancient China.
Image credit: Jian Ma.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Cozzarelli Prize
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490