Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Towards the molecular architecture of the peroxisomal receptor docking complex

Pascal Lill, Tobias Hansen, View ORCID ProfileDaniel Wendscheck, View ORCID ProfileBjoern Udo Klink, Tomasz Jeziorek, Dimitrios Vismpas, Jonas Miehling, View ORCID ProfileJulian Bender, Andreas Schummer, View ORCID ProfileFriedel Drepper, Wolfgang Girzalsky, View ORCID ProfileBettina Warscheid, View ORCID ProfileRalf Erdmann, and View ORCID ProfileChristos Gatsogiannis
PNAS December 29, 2020 117 (52) 33216-33224; first published December 15, 2020; https://doi.org/10.1073/pnas.2009502117
Pascal Lill
aDepartment of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tobias Hansen
bInstitute of Biochemistry and Pathobiochemistry, Faculty of Medicine, System Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniel Wendscheck
cBiochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Daniel Wendscheck
Bjoern Udo Klink
aDepartment of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Bjoern Udo Klink
Tomasz Jeziorek
bInstitute of Biochemistry and Pathobiochemistry, Faculty of Medicine, System Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dimitrios Vismpas
aDepartment of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jonas Miehling
aDepartment of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Julian Bender
cBiochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Julian Bender
Andreas Schummer
cBiochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Friedel Drepper
cBiochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany;
dSignalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Friedel Drepper
Wolfgang Girzalsky
bInstitute of Biochemistry and Pathobiochemistry, Faculty of Medicine, System Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bettina Warscheid
cBiochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany;
dSignalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Bettina Warscheid
  • For correspondence: bettina.warscheid@biologie.uni-freiburg.de Ralf.Erdmann@rub.de christos.gatsogiannis@uni-muenster.de
Ralf Erdmann
bInstitute of Biochemistry and Pathobiochemistry, Faculty of Medicine, System Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ralf Erdmann
  • For correspondence: bettina.warscheid@biologie.uni-freiburg.de Ralf.Erdmann@rub.de christos.gatsogiannis@uni-muenster.de
Christos Gatsogiannis
aDepartment of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany;
eInstitute for Medical Physics and Biophysics and Center for Soft Nanoscience, Westfälische Wilhelms Universität Münster, 48149 Münster, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Christos Gatsogiannis
  • For correspondence: bettina.warscheid@biologie.uni-freiburg.de Ralf.Erdmann@rub.de christos.gatsogiannis@uni-muenster.de
  1. Edited by James H. Hurley, University of California, Berkeley, CA, and approved October 19, 2020 (received for review May 16, 2020)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

Peroxisomal matrix enzymes are synthesized in the cytosol and carry targeting signals. These are recognized and bound by an import receptor in the cytosol. The cargo-loaded receptor further binds to the “docking” complex at the peroxisomal membrane. The docking events are expected to trigger the formation of a transient pore allowing import of the cargo into the peroxisomal matrix. Here using cryoelectron microscopy complemented by native MS, cross-linking MS, SEC MALS, and immunogold labeling, we provide the structural characterization of the major components of the yeast peroxisomal docking complex. Pex14p/Pex17p assemble in a parallel 3:1 bundle arrangement to form intriguingly long flexible rods that emanate into the cytosol to recruit the cargo-loaded receptor for further translocation events.

Abstract

Import of yeast peroxisomal matrix proteins is initiated by cytosolic receptors, which specifically recognize and bind the respective cargo proteins. At the peroxisomal membrane, the cargo-loaded receptor interacts with the docking protein Pex14p that is tightly associated with Pex17p. Previous data suggest that this interaction triggers the formation of an import pore for further translocation of the cargo. The mechanistic principles, however, are unclear, mainly because structures of higher-order assemblies are still lacking. Here, using an integrative approach, we provide the structural characterization of the major components of the peroxisomal docking complex Pex14p/Pex17p, in a native bilayer environment, and reveal its subunit organization. Our data show that three copies of Pex14p and a single copy of Pex17p assemble to form a 20-nm rod-like particle. The different subunits are arranged in a parallel manner, showing interactions along their complete sequences and providing receptor binding sites on both membrane sides. The long rod facing the cytosol is mainly formed by the predicted coiled-coil domains of Pex14p and Pex17p, possibly providing the necessary structural support for the formation of the import pore. Further implications of Pex14p/Pex17p for formation of the peroxisomal translocon are discussed.

  • peroxisomal import
  • peroxin
  • docking complex
  • peroxisomal translocon
  • cryoEM

Footnotes

  • ↵1P.L., T.H., and D.W. contributed equally to this work.

  • ↵2Present address: Interdisciplinary Research Center HALOmem, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.

  • ↵3Present address: Protagen Protein Services GmbH, 74076 Heilbronn, Germany.

  • ↵4To whom correspondence may be addressed. Email: bettina.warscheid{at}biologie.uni-freiburg.de, Ralf.Erdmann{at}rub.de, or christos.gatsogiannis{at}uni-muenster.de.
  • Author contributions: B.W., R.E., and C.G. designed research; P.L., T.H., D.W., B.U.K., T.J., D.V., J.M., J.B., A.S., F.D., W.G., and C.G. performed research; P.L., T.H., D.W., B.U.K., T.J., J.B., F.D., W.G., and C.G. analyzed data; and B.W., R.E., and C.G. wrote the paper.

  • The authors declare no competing interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2009502117/-/DCSupplemental.

Data Availability.

The EM density map has been deposited in the Electron Microscopy Data Bank under accession code EMD-12047. MS raw data and result files have been deposited in the ProteomeXchange Consortium via the PRIDE repository (56) and are publicly accessible from its website with the dataset identifier PXD016304. All study data are included in the article and supporting information.

Published under the PNAS license.

View Full Text

References

  1. 1.↵
    1. N. E. Braverman et al
    ., Peroxisome biogenesis disorders in the Zellweger spectrum: An overview of current diagnosis, clinical manifestations, and treatment guidelines. Mol. Genet. Metab. 117, 313–321 (2016).
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. H. R. Waterham,
    2. S. Ferdinandusse,
    3. R. J. A. Wanders
    , Human disorders of peroxisome metabolism and biogenesis. Biochim. Biophys. Acta 1863, 922–933 (2016).
    OpenUrlCrossRefPubMed
  3. 3.↵
    1. P. B. Lazarow,
    2. Y. Fujiki
    , Biogenesis of peroxisomes. Annu. Rev. Cell Biol. 1, 489–530 (1985).
    OpenUrlCrossRefPubMed
  4. 4.↵
    1. J. R. Glover,
    2. D. W. Andrews,
    3. R. A. Rachubinski
    , Saccharomyces cerevisiae peroxisomal thiolase is imported as a dimer. Proc. Natl. Acad. Sci. U.S.A. 91, 10541–10545 (1994).
    OpenUrlAbstract/FREE Full Text
  5. 5.↵
    1. J. A. McNew,
    2. J. M. Goodman
    , An oligomeric protein is imported into peroxisomes in vivo. J. Cell Biol. 127, 1245–1257 (1994).
    OpenUrlAbstract/FREE Full Text
  6. 6.↵
    1. S. Hasan,
    2. H. W. Platta,
    3. R. Erdmann
    , Import of proteins into the peroxisomal matrix. Front. Physiol. 4, 261 (2013).
    OpenUrlCrossRefPubMed
  7. 7.↵
    1. P. E. Purdue,
    2. P. B. Lazarow
    , Peroxisome biogenesis. Annu. Rev. Cell Dev. Biol. 17, 701–752 (2001).
    OpenUrlCrossRefPubMed
  8. 8.↵
    1. L.-A. Brown,
    2. A. Baker
    , Peroxisome biogenesis and the role of protein import. J. Cell. Mol. Med. 7, 388–400 (2003).
    OpenUrlCrossRefPubMed
  9. 9.↵
    1. W. Girzalsky,
    2. D. Saffian,
    3. R. Erdmann
    , Peroxisomal protein translocation. Biochim. Biophys. Acta 1803, 724–731 (2010).
    OpenUrlCrossRefPubMed
  10. 10.↵
    1. M. Albertini et al
    ., Pex14p, a peroxisomal membrane protein binding both receptors of the two PTS-dependent import pathways. Cell 89, 83–92 (1997).
    OpenUrlCrossRefPubMed
  11. 11.↵
    1. Y. Elgersma et al
    ., Analysis of the carboxyl-terminal peroxisomal targeting signal 1 in a homologous context in Saccharomyces cerevisiae. J. Biol. Chem. 271, 26375–26382 (1996).
    OpenUrlAbstract/FREE Full Text
  12. 12.↵
    1. R. Erdmann,
    2. G. Blobel
    , Identification of Pex13p a peroxisomal membrane receptor for the PTS1 recognition factor. J. Cell Biol. 135, 111–121 (1996).
    OpenUrlAbstract/FREE Full Text
  13. 13.↵
    1. S. J. Gould et al
    ., Pex13p is an SH3 protein of the peroxisome membrane and a docking factor for the predominantly cytoplasmic PTs1 receptor. J. Cell Biol. 135, 85–95 (1996).
    OpenUrlAbstract/FREE Full Text
  14. 14.↵
    1. B. Huhse et al
    ., Pex17p of Saccharomyces cerevisiae is a novel peroxin and component of the peroxisomal protein translocation machinery. J. Cell Biol. 140, 49–60 (1998).
    OpenUrlAbstract/FREE Full Text
  15. 15.↵
    1. M. Meinecke et al
    ., The peroxisomal importomer constitutes a large and highly dynamic pore. Nat. Cell Biol. 12, 273–277 (2010).
    OpenUrlCrossRefPubMed
  16. 16.↵
    1. M. Meinecke,
    2. P. Bartsch,
    3. R. Wagner
    , Peroxisomal protein import pores. Biochim. Biophys. Acta 1863, 821–827 (2016).
    OpenUrlCrossRef
  17. 17.↵
    1. M. Montilla-Martinez et al
    ., Distinct pores for peroxisomal import of PTS1 and PTS2 proteins. Cell Rep. 13, 2126–2134 (2015).
    OpenUrlCrossRefPubMed
  18. 18.↵
    1. N. Miyata,
    2. Y. Fujiki
    , Shuttling mechanism of peroxisome targeting signal type 1 receptor Pex5: ATP-independent import and ATP-dependent export. Mol. Cell. Biol. 25, 10822–10832 (2005).
    OpenUrlAbstract/FREE Full Text
  19. 19.↵
    1. H. W. Platta,
    2. S. Grunau,
    3. K. Rosenkranz,
    4. W. Girzalsky,
    5. R. Erdmann
    , Functional role of the AAA peroxins in dislocation of the cycling PTS1 receptor back to the cytosol. Nat. Cell Biol. 7, 817–822 (2005).
    OpenUrlCrossRefPubMed
  20. 20.↵
    1. W. Schliebs,
    2. W. Girzalsky,
    3. R. Erdmann
    , Peroxisomal protein import and ERAD: Variations on a common theme. Nat. Rev. Mol. Cell Biol. 11, 885–890 (2010).
    OpenUrlCrossRefPubMed
  21. 21.↵
    1. H. Otera et al
    ., The mammalian peroxin Pex5pL, the longer isoform of the mobile peroxisome targeting signal (PTS) type 1 transporter, translocates the Pex7p.PTS2 protein complex into peroxisomes via its initial docking site, Pex14p. J. Biol. Chem. 275, 21703–21714 (2000).
    OpenUrlAbstract/FREE Full Text
  22. 22.↵
    1. A. J. Urquhart,
    2. D. Kennedy,
    3. S. J. Gould,
    4. D. I. Crane
    , Interaction of Pex5p, the type 1 peroxisome targeting signal receptor, with the peroxisomal membrane proteins Pex14p and Pex13p. J. Biol. Chem. 275, 4127–4136 (2000).
    OpenUrlAbstract/FREE Full Text
  23. 23.↵
    1. B. Agne et al
    ., Pex8p: An intraperoxisomal organizer of the peroxisomal import machinery. Mol. Cell 11, 635–646 (2003).
    OpenUrlCrossRefPubMed
  24. 24.↵
    1. A. Chan et al
    ., Pex17p-dependent assembly of Pex14p/Dyn2p-subcomplexes of the peroxisomal protein import machinery. Eur. J. Cell Biol. 95, 585–597 (2016).
    OpenUrlCrossRefPubMed
  25. 25.↵
    1. A. Schell-Steven et al
    ., Identification of a novel, intraperoxisomal pex14-binding site in pex13: Association of pex13 with the docking complex is essential for peroxisomal matrix protein import. Mol. Cell. Biol. 25, 3007–3018 (2005).
    OpenUrlAbstract/FREE Full Text
  26. 26.↵
    1. W. Girzalsky et al
    ., Involvement of Pex13p in Pex14p localization and peroxisomal targeting signal 2-dependent protein import into peroxisomes. J. Cell Biol. 144, 1151–1162 (1999).
    OpenUrlAbstract/FREE Full Text
  27. 27.↵
    1. K. Niederhoff et al
    ., Yeast Pex14p possesses two functionally distinct Pex5p and one Pex7p binding sites. J. Biol. Chem. 280, 35571–35578 (2005).
    OpenUrlAbstract/FREE Full Text
  28. 28.↵
    1. R. Itoh,
    2. Y. Fujiki
    , Functional domains and dynamic assembly of the peroxin Pex14p, the entry site of matrix proteins. J. Biol. Chem. 281, 10196–10205 (2006).
    OpenUrlAbstract/FREE Full Text
  29. 29.↵
    1. J. E. Azevedo,
    2. W. Schliebs
    , Pex14p, more than just a docking protein. Biochim. Biophys. Acta 1763, 1574–1584 (2006).
    OpenUrlCrossRefPubMed
  30. 30.↵
    1. W. Schliebs et al
    ., Recombinant human peroxisomal targeting signal receptor PEX5. Structural basis for interaction of PEX5 with PEX14. J. Biol. Chem. 274, 5666–5673 (1999).
    OpenUrlAbstract/FREE Full Text
  31. 31.↵
    1. J. Saidowsky et al
    ., The di-aromatic pentapeptide repeats of the human peroxisome import receptor PEX5 are separate high affinity binding sites for the peroxisomal membrane protein PEX14. J. Biol. Chem. 276, 34524–34529 (2001).
    OpenUrlAbstract/FREE Full Text
  32. 32.↵
    1. H. Otera et al
    ., Peroxisomal targeting signal receptor Pex5p interacts with cargoes and import machinery components in a spatiotemporally differentiated manner: Conserved Pex5p WXXXF/Y motifs are critical for matrix protein import. Mol. Cell. Biol. 22, 1639–1655 (2002).
    OpenUrlAbstract/FREE Full Text
  33. 33.↵
    1. A. Neuhaus et al
    ., A novel Pex14 protein-interacting site of human Pex5 is critical for matrix protein import into peroxisomes. J. Biol. Chem. 289, 437–448 (2014).
    OpenUrlAbstract/FREE Full Text
  34. 34.↵
    1. A. Barros-Barbosa et al
    ., Membrane topologies of PEX13 and PEX14 provide new insights on the mechanism of protein import into peroxisomes. FEBS J. 286, 205–222 (2019).
    OpenUrlCrossRef
  35. 35.↵
    1. L. Li et al
    ., Pex14/17, a filamentous fungus-specific peroxin, is required for the import of peroxisomal matrix proteins and full virulence of Magnaporthe oryzae. Mol. Plant Pathol. 18, 1238–1252 (2017).
    OpenUrl
  36. 36.↵
    1. A. Laganowsky,
    2. E. Reading,
    3. J. T. S. Hopper,
    4. C. V. Robinson
    , Mass spectrometry of intact membrane protein complexes. Nat. Protoc. 8, 639–651 (2013).
    OpenUrlCrossRefPubMed
  37. 37.↵
    1. T. Hansen et al
    ., Isolation of native soluble and membrane-bound protein complexes from yeast Saccharomyces cerevisiae. Methods Mol. Biol. 1595, 37–44 (2017).
    OpenUrl
  38. 38.↵
    1. J. Miehling,
    2. D. Goricanec,
    3. F. Hagn
    , A split-intein-based method for the efficient production of circularized nanodiscs for structural studies of membrane proteins. ChemBioChem 19, 1927–1933 (2018).
    OpenUrlCrossRefPubMed
  39. 39.↵
    1. T. Wagner et al.
    , SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 218 (2019).
    OpenUrl
  40. 40.↵
    1. T. Moriya et al
    ., High-resolution single particle analysis from electron cryo-microscopy images using SPHIRE. J. Vis. Exp., 55448 (2017).
  41. 41.↵
    1. F. J. O’Reilly,
    2. J. Rappsilber
    , Cross-linking mass spectrometry: Methods and applications in structural, molecular and systems biology. Nat. Struct. Mol. Biol. 25, 1000–1008 (2018).
    OpenUrl
  42. 42.↵
    1. W. Girzalsky et al
    ., Pex19p-dependent targeting of Pex17p, a peripheral component of the peroxisomal protein import machinery. J. Biol. Chem. 281, 19417–19425 (2006).
    OpenUrlAbstract/FREE Full Text
  43. 43.↵
    1. J.-R. Su,
    2. K. Takeda,
    3. S. Tamura,
    4. Y. Fujiki,
    5. K. Miki
    , Crystal structure of the conserved N-terminal domain of the peroxisomal matrix protein import receptor, Pex14p. Proc. Natl. Acad. Sci. U.S.A. 106, 417–421 (2009).
    OpenUrlAbstract/FREE Full Text
  44. 44.↵
    1. L.-A. Brown,
    2. A. Baker
    , Shuttles and cycles: Transport of proteins into the peroxisome matrix (review). (review). Mol. Membr. Biol. 25, 363–375 (2008).
    OpenUrlCrossRefPubMed
  45. 45.↵
    1. C. Brocard,
    2. G. Lametschwandtner,
    3. R. Koudelka,
    4. A. Hartig
    , Pex14p is a member of the protein linkage map of Pex5p. EMBO J. 16, 5491–5500 (1997).
    OpenUrlAbstract/FREE Full Text
  46. 46.↵
    1. N. Shimizu et al
    ., The peroxin Pex14p. cDNA cloning by functional complementation on a Chinese hamster ovary cell mutant, characterization, and functional analysis. J. Biol. Chem. 274, 12593–12604 (1999).
    OpenUrlAbstract/FREE Full Text
  47. 47.↵
    1. W. B. Snyder et al
    ., Pex17p is required for import of both peroxisome membrane and lumenal proteins and interacts with Pex19p and the peroxisome targeting signal-receptor docking complex in Pichia pastoris. Mol. Biol. Cell 10, 4005–4019 (1999).
    OpenUrlAbstract/FREE Full Text
  48. 48.↵
    1. C. Holroyd,
    2. R. Erdmann
    , Protein translocation machineries of peroxisomes. FEBS Lett. 501, 6–10 (2001).
    OpenUrlCrossRefPubMed
  49. 49.↵
    1. C. Ma,
    2. S. Subramani
    , Peroxisome matrix and membrane protein biogenesis. IUBMB Life 61, 713–722 (2009).
    OpenUrlCrossRefPubMed
  50. 50.↵
    1. M. E. Oliveira,
    2. A. M. Gouveia,
    3. R. A. Pinto,
    4. C. Sá-Miranda,
    5. J. E. Azevedo
    , The energetics of Pex5p-mediated peroxisomal protein import. J. Biol. Chem. 278, 39483–39488 (2003).
    OpenUrlAbstract/FREE Full Text
  51. 51.↵
    1. G. K. Will et al
    ., Identification and characterization of the human orthologue of yeast Pex14p. Mol. Cell. Biol. 19, 2265–2277 (1999).
    OpenUrlAbstract/FREE Full Text
  52. 52.↵
    1. J. S. Martenson et al.
    , The importomer is a peroxisomal membrane protein translocase. bioRxiv:1863:2020.05.01.072660 (Posted 3 May 2020).
  53. 53.↵
    1. R. Erdmann,
    2. W. Schliebs
    , Peroxisomal matrix protein import: The transient pore model. Nat. Rev. Mol. Cell Biol. 6, 738–742 (2005).
    OpenUrlCrossRefPubMed
  54. 54.↵
    1. F. A. Salomons,
    2. J. A. Kiel,
    3. K. N. Faber,
    4. M. Veenhuis,
    5. I. J. van der Klei
    , Overproduction of Pex5p stimulates import of alcohol oxidase and dihydroxyacetone synthase in a Hansenula polymorpha Pex14 null mutant. J. Biol. Chem. 275, 12603–12611 (2000).
    OpenUrlAbstract/FREE Full Text
  55. 55.↵
    1. D. Kerssen et al
    ., Membrane association of the cycling peroxisome import receptor Pex5p. J. Biol. Chem. 281, 27003–27015 (2006).
    OpenUrlAbstract/FREE Full Text
  56. 56.↵
    1. Y. Perez-Riverol et al
    ., The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).
    OpenUrlCrossRefPubMed
  57. 57.↵
    1. J. Yang et al
    ., Improved protein structure prediction using predicted interresidue orientations. Proc. Natl. Acad. Sci. U.S.A. 117, 1496–1503 (2020).
    OpenUrlAbstract/FREE Full Text

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

Subscribers, for more details, please visit our Subscriptions FAQ.

Please click here to log into the PNAS submission website.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Towards the molecular architecture of the peroxisomal receptor docking complex
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Towards the molecular architecture of the peroxisomal receptor docking complex
Pascal Lill, Tobias Hansen, Daniel Wendscheck, Bjoern Udo Klink, Tomasz Jeziorek, Dimitrios Vismpas, Jonas Miehling, Julian Bender, Andreas Schummer, Friedel Drepper, Wolfgang Girzalsky, Bettina Warscheid, Ralf Erdmann, Christos Gatsogiannis
Proceedings of the National Academy of Sciences Dec 2020, 117 (52) 33216-33224; DOI: 10.1073/pnas.2009502117

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Towards the molecular architecture of the peroxisomal receptor docking complex
Pascal Lill, Tobias Hansen, Daniel Wendscheck, Bjoern Udo Klink, Tomasz Jeziorek, Dimitrios Vismpas, Jonas Miehling, Julian Bender, Andreas Schummer, Friedel Drepper, Wolfgang Girzalsky, Bettina Warscheid, Ralf Erdmann, Christos Gatsogiannis
Proceedings of the National Academy of Sciences Dec 2020, 117 (52) 33216-33224; DOI: 10.1073/pnas.2009502117
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 117 (52)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Biological Sciences
  • Biochemistry

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Materials and Methods
    • Data Availability.
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Surgeons hands during surgery
Inner Workings: Advances in infectious disease treatment promise to expand the pool of donor organs
Despite myriad challenges, clinicians see room for progress.
Image credit: Shutterstock/David Tadevosian.
Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Double helix
Journal Club: Noncoding DNA shown to underlie function, cause limb malformations
Using CRISPR, researchers showed that a region some used to label “junk DNA” has a major role in a rare genetic disorder.
Image credit: Nathan Devery.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Birds nestling on tree branches
Parent–offspring conflict in songbird fledging
Some songbird parents might improve their own fitness by manipulating their offspring into leaving the nest early, at the cost of fledgling survival, a study finds.
Image credit: Gil Eckrich (photographer).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490