Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Pyridoxal kinase inhibition by artemisinins down-regulates inhibitory neurotransmission

View ORCID ProfileVikram Babu Kasaragod, View ORCID ProfileAnabel Pacios-Michelena, View ORCID ProfileNatascha Schaefer, View ORCID ProfileFang Zheng, Nicole Bader, View ORCID ProfileChristian Alzheimer, Carmen Villmann, and View ORCID ProfileHermann Schindelin
PNAS December 29, 2020 117 (52) 33235-33245; first published December 14, 2020; https://doi.org/10.1073/pnas.2008695117
Vikram Babu Kasaragod
aInstitute of Structural Biology, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Vikram Babu Kasaragod
  • For correspondence: vkasaragod@mrc-lmb.cam.ac.uk hermann.schindelin@virchow.uni-wuerzburg.de
Anabel Pacios-Michelena
aInstitute of Structural Biology, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Anabel Pacios-Michelena
Natascha Schaefer
bInstitute for Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Natascha Schaefer
Fang Zheng
cInstitute of Physiology and Pathophysiology, Friedrich Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Fang Zheng
Nicole Bader
aInstitute of Structural Biology, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christian Alzheimer
cInstitute of Physiology and Pathophysiology, Friedrich Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Christian Alzheimer
Carmen Villmann
bInstitute for Clinical Neurobiology, University of Würzburg, 97078 Würzburg, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hermann Schindelin
aInstitute of Structural Biology, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hermann Schindelin
  • For correspondence: vkasaragod@mrc-lmb.cam.ac.uk hermann.schindelin@virchow.uni-wuerzburg.de
  1. Edited by Lily Yeh Jan, University of California, San Francisco, CA, and approved October 26, 2020 (received for review May 3, 2020)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

Information processing in the central nervous system relies on chemical synapses where neurotransmitters such as the inhibitory neurotransmitter γ-aminobutyric acid (GABA) are released at presynaptic nerve endings. GABA is synthesized by glutamic acid decarboxylase (GAD), an enzyme requiring pyridoxal 5'-phosphate (PLP or vitamin B6) as cofactor, the latter being synthesized by pyridoxal kinase (PDXK). Here, we show that the antimalarial drug artemisinin inhibits PDXK and describe the structural basis of this inhibition. The decrease in PLP production reduces the amount of GABA being produced, which, in turn, impacts the efficacy of GABAergic transmission. This study combined with our previous data sheds light on how artemisinins can influence inhibitory synaptic transmissions both presynaptically, as described here, and postsynaptically.

Abstract

The antimalarial artemisinins have also been implicated in the regulation of various cellular pathways including immunomodulation of cancers and regulation of pancreatic cell signaling in mammals. Despite their widespread application, the cellular specificities and molecular mechanisms of target recognition by artemisinins remain poorly characterized. We recently demonstrated how these drugs modulate inhibitory postsynaptic signaling by direct binding to the postsynaptic scaffolding protein gephyrin. Here, we report the crystal structure of the central metabolic enzyme pyridoxal kinase (PDXK), which catalyzes the production of the active form of vitamin B6 (also known as pyridoxal 5′-phosphate [PLP]), in complex with artesunate at 2.4-Å resolution. Partially overlapping binding of artemisinins with the substrate pyridoxal inhibits PLP biosynthesis as demonstrated by kinetic measurements. Electrophysiological recordings from hippocampal slices and activity measurements of glutamic acid decarboxylase (GAD), a PLP-dependent enzyme synthesizing the neurotransmitter γ-aminobutyric acid (GABA), define how artemisinins also interfere presynaptically with GABAergic signaling. Our data provide a comprehensive picture of artemisinin-induced effects on inhibitory signaling in the brain.

  • artemisinins
  • pyridoxal kinase
  • pyridoxal phosphate (PLP)
  • GABA biosynthesis
  • inhibitory neurotransmission

Footnotes

  • ↵1V.B.K. and A.P.M. contributed equally to this work.

  • ↵2Present address: Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom.

  • ↵3To whom correspondence may be addressed. Email: vkasaragod{at}mrc-lmb.cam.ac.uk or hermann.schindelin{at}virchow.uni-wuerzburg.de.
  • Author contributions: V.B.K., A.P.M., N.S., F.Z., C.A., C.V., and H.S. designed research; V.B.K., A.P.M., N.S., F.Z., N.B., and C.V. performed research; V.B.K., A.P.M., N.S., F.Z., N.B., C.V., and H.S. analyzed data; and V.B.K., C.A., C.V., and H.S. wrote the paper.

  • The authors declare no competing interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008695117/-/DCSupplemental.

Data Availability.

The coordinates of mPDXK-apo, mPDXK-ATPγS, and mPDXK-ATPγS–artesunate structures have been deposited in the PDB with accession codes 6YJZ, 6YK0, and 6YK1, respectively.

Published under the PNAS license.

View Full Text

References

  1. ↵
    1. M. H. Li et al
    ., Conformational changes in the reaction of pyridoxal kinase. J. Biol. Chem. 279, 17459–17465 (2004).
    OpenUrlAbstract/FREE Full Text
  2. ↵
    1. J. T. Neary,
    2. W. F. Diven
    , Purification, properties, and a possible mechanism for pyridoxal kinase from bovine brain. J. Biol. Chem. 245, 5585–5593 (1970).
    OpenUrlAbstract/FREE Full Text
  3. ↵
    1. C. Merigliano,
    2. E. Mascolo,
    3. R. Burla,
    4. I. Saggio,
    5. F. Vernì
    , The relationship between vitamin B6, diabetes and cancer. Front. Genet. 9, 388 (2018).
    OpenUrl
  4. ↵
    1. M. L. di Salvo,
    2. M. K. Safo,
    3. R. Contestabile
    , Biomedical aspects of pyridoxal 5′-phosphate availability. Front. Biosci. (Elite Ed.) 4, 897–913 (2012).
    OpenUrlPubMed
  5. ↵
    1. R. Percudani,
    2. A. Peracchi
    , A genomic overview of pyridoxal-phosphate-dependent enzymes. EMBO Rep. 4, 850–854 (2003).
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. A. C. Eliot,
    2. J. F. Kirsch
    , Pyridoxal phosphate enzymes: Mechanistic, structural, and evolutionary considerations. Annu. Rev. Biochem. 73, 383–415 (2004).
    OpenUrlCrossRefPubMed
  7. ↵
    1. J. Li et al
    ., Artemisinins target GABAA receptor signaling and impair alpha cell identity. Cell 168, 86–100.e15 (2017).
    OpenUrlCrossRefPubMed
  8. ↵
    1. Y. Tu
    , Artemisinin-A gift from traditional Chinese medicine to the world (nobel lecture). Angew. Chem. Int. Ed. Engl. 55, 10210–10226 (2016).
    OpenUrlCrossRefPubMed
  9. ↵
    1. WHO
    , “Guidelines for the treatment of malaria” in Guidelines for the Treatment of Malaria (World Health Organization, Geneva, Switzerland, ed. 3, 2015).
  10. ↵
    1. M. P. Crespo-Ortiz,
    2. M. Q. Wei
    , Antitumor activity of artemisinin and its derivatives: From a well-known antimalarial agent to a potential anticancer drug. J. Biomed. Biotechnol. 2012, 247597 (2012).
    OpenUrlPubMed
  11. ↵
    1. A. Gautam,
    2. T. Ahmed,
    3. V. Batra,
    4. J. Paliwal
    , Pharmacokinetics and pharmacodynamics of endoperoxide antimalarials. Curr. Drug Metab. 10, 289–306 (2009).
    OpenUrlCrossRefPubMed
  12. ↵
    1. T. van der Meulen et al
    ., Artemether does not turn alpha cells into beta cells. Cell Metab. 27, 218–225.e214 (2018).
    OpenUrlCrossRef
  13. ↵
    1. A. M. Ackermann,
    2. N. G. Moss,
    3. K. H. Kaestner
    , GABA and artesunate do not induce pancreatic alpha-to-beta cell transdifferentiation in vivo. Cell Metab. 28, 787–792.e783 (2018).
    OpenUrlCrossRef
  14. ↵
    1. V. B. Kasaragod et al
    ., Elucidating the molecular basis for inhibitory neurotransmission regulation by artemisinins. Neuron 101, 673–689.e611 (2019).
    OpenUrl
  15. ↵
    1. V. B. Kasaragod,
    2. H. Schindelin
    , Structural framework for metal incorporation during molybdenum cofactor biosynthesis. Structure 24, 782–788 (2016).
    OpenUrlCrossRef
  16. ↵
    1. J. Kuper,
    2. A. Llamas,
    3. H. J. Hecht,
    4. R. R. Mendel,
    5. G. Schwarz
    , Structure of the molybdopterin-bound Cnx1G domain links molybdenum and copper metabolism. Nature 430, 803–806 (2004).
    OpenUrlCrossRefPubMed
  17. ↵
    1. V. B. Kasaragod,
    2. H. Schindelin
    , Structure-function relationships of glycine and GABAA receptors and their interplay with the scaffolding protein gephyrin. Front. Mol. Neurosci. 11, 317 (2018).
    OpenUrl
  18. ↵
    1. J. A. Kerry,
    2. M. Rohde,
    3. F. Kwok
    , Brain pyridoxal kinase. Purification and characterization. Eur. J. Biochem. 158, 581–585 (1986).
    OpenUrlPubMed
  19. ↵
    1. P. W. Elsinghorst,
    2. M. L. di Salvo,
    3. A. Parroni,
    4. R. Contestabile
    , Inhibition of human pyridoxal kinase by 2-acetyl-4-((1R,2S,3R)-1,2,3,4-tetrahydroxybutyl)imidazole (THI). J. Enzyme Inhib. Med. Chem. 30, 336–340 (2015).
    OpenUrl
  20. ↵
    1. M. C. Hanna,
    2. A. J. Turner,
    3. E. F. Kirkness
    , Human pyridoxal kinase. cDNA cloning, expression, and modulation by ligands of the benzodiazepine receptor. J. Biol. Chem. 272, 10756–10760 (1997).
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. D. C. Jones,
    2. M. S. Alphey,
    3. S. Wyllie,
    4. A. H. Fairlamb
    , Chemical, genetic and structural assessment of pyridoxal kinase as a drug target in the African trypanosome. Mol. Microbiol. 86, 51–64 (2012).
    OpenUrlCrossRefPubMed
  22. ↵
    1. F. Kwok,
    2. J. E. Churchich
    , Brain pyridoxal kinase. Purification, substrate specificities, and sensitized photodestruction of an essential histidine. J. Biol. Chem. 254, 6489–6495 (1979).
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. D. B. McCormick,
    2. M. E. Gregory,
    3. E. E. Snell
    , Pyridoxal phosphokinases. I. Assay, distribution, I. Assay, distribution, purification, and properties. J. Biol. Chem. 236, 2076–2084 (1961).
    OpenUrlFREE Full Text
  24. ↵
    1. M. K. Safo et al
    ., Crystal structure of pyridoxal kinase from the Escherichia coli pdxK gene: Implications for the classification of pyridoxal kinases. J. Bacteriol. 188, 4542–4552 (2006).
    OpenUrlAbstract/FREE Full Text
  25. ↵
    1. J. B. Ubbink,
    2. S. Bissbort,
    3. W. J. Vermaak,
    4. R. Delport
    , Inhibition of pyridoxal kinase by methylxanthines. Enzyme 43, 72–79 (1990).
    OpenUrlPubMed
  26. ↵
    1. F. N. Musayev et al
    ., Crystal structure of human pyridoxal kinase: Structural basis of M(+) and M(2+) activation. Protein Sci. 16, 2184–2194 (2007).
    OpenUrlCrossRefPubMed
  27. ↵
    1. M. H. Li et al
    ., Crystal structure of brain pyridoxal kinase, a novel member of the ribokinase superfamily. J. Biol. Chem. 277, 46385–46390 (2002).
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. D. Engel et al
    ., Plasticity of rat central inhibitory synapses through GABA metabolism. J. Physiol. 535, 473–482 (2001).
    OpenUrlCrossRefPubMed
  29. ↵
    1. J. Wei,
    2. K. M. Davis,
    3. H. Wu,
    4. J. Y. Wu
    , Protein phosphorylation of human brain glutamic acid decarboxylase (GAD)65 and GAD67 and its physiological implications. Biochemistry 43, 6182–6189 (2004).
    OpenUrlCrossRefPubMed
  30. ↵
    1. C. C. Chou et al
    ., Activation of brain L-glutamate decarboxylase 65 isoform (GAD65) by phosphorylation at threonine 95 (T95). Mol. Neurobiol. 54, 866–873 (2017).
    OpenUrl
  31. ↵
    1. T. M. E. Davis et al
    ., Penetration of dihydroartemisinin into cerebrospinal fluid after administration of intravenous artesunate in severe falciparum malaria. Antimicrob. Agents Chemother. 47, 368–370 (2003).
    OpenUrlAbstract/FREE Full Text
  32. ↵
    1. G. Schmuck,
    2. E. Roehrdanz,
    3. R. K. Haynes,
    4. R. Kahl
    , Neurotoxic mode of action of artemisinin. Antimicrob. Agents Chemother. 46, 821–827 (2002).
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. T. G. Brewer et al
    ., Fatal neurotoxicity of arteether and artemether. Am. J. Trop. Med. Hyg. 51, 251–259 (1994).
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. D. L. Wesche,
    2. M. A. DeCoster,
    3. F. C. Tortella,
    4. T. G. Brewer
    , Neurotoxicity of artemisinin analogs in vitro. Antimicrob. Agents Chemother. 38, 1813–1819 (1994).
    OpenUrlAbstract/FREE Full Text
  35. ↵
    1. L. Tang et al
    ., Crystal structure of pyridoxal kinase in complex with roscovitine and derivatives. J. Biol. Chem. 280, 31220–31229 (2005).
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. S. Bach et al
    ., Roscovitine targets, protein kinases and pyridoxal kinase. J. Biol. Chem. 280, 31208–31219 (2005).
    OpenUrlAbstract/FREE Full Text
  37. ↵
    1. A. K. Gandhi et al
    ., Crystal structures of human pyridoxal kinase in complex with the neurotoxins, ginkgotoxin and theophylline: Insights into pyridoxal kinase inhibition. PLoS One 7, e40954 (2012).
    OpenUrlCrossRefPubMed
  38. ↵
    1. F. Zheng et al
    ., Activin controls ethanol potentiation of inhibitory synaptic transmission through GABAA receptors and concomitant behavioral sedation. Neuropsychopharmacology 41, 2024–2033 (2016).
    OpenUrlCrossRef
  39. ↵
    1. M. Z. Li,
    2. S. J. Elledge
    , Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat. Methods 4, 251–256 (2007).
    OpenUrlCrossRefPubMed
  40. ↵
    1. W. Kabsch
    , Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).
    OpenUrlCrossRefPubMed
  41. ↵
    1. P. R. Evans,
    2. G. N. Murshudov
    , How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 69, 1204–1214 (2013).
    OpenUrlCrossRefPubMed
  42. ↵
    1. M. D. Winn et al
    ., Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).
    OpenUrlCrossRefPubMed
  43. ↵
    1. A. J. McCoy et al
    ., Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007).
    OpenUrlCrossRefPubMed
  44. ↵
    1. P. D. Adams et al
    ., PHENIX: A comprehensive python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
    OpenUrlCrossRefPubMed
  45. ↵
    1. P. Emsley,
    2. K. Cowtan
    , Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).
    OpenUrlCrossRefPubMed
  46. ↵
    1. E. F. Pettersen et al
    ., UCSF Chimera–A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
    OpenUrlCrossRefPubMed
  47. ↵
    1. T. D. Goddard et al
    ., UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).
    OpenUrlCrossRefPubMed
  48. ↵
    1. H. Lineweaver,
    2. D. Burk
    , The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56, 658–666 (1934).
    OpenUrlCrossRef
  49. ↵
    1. M. Dixon
    , The determination of enzyme inhibitor constants. Biochem. J. 55, 170–171 (1953).
    OpenUrlFREE Full Text
  50. ↵
    1. I. P. Lowe,
    2. E. Robins,
    3. G. S. Eyerman
    , The fluorometric measurement of glutamic decarboxylase and its distribution in brain. J. Neurochem. 3, 8–18 (1958).
    OpenUrlPubMed
  51. ↵
    1. M. R. Holdiness,
    2. J. B. Justice,
    3. B. Darryl,
    4. B. D. Neill,
    5. J. D. Salamone
    , Fluorimetric assay for the determination of glutamic acid decarboxylase activity in subregions of rat brain tissue. Anal. Lett. 13, 1333–1344 (1980).
    OpenUrl
  52. ↵
    1. C. A. Schneider,
    2. W. S. Rasband,
    3. K. W. Eliceiri
    , NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
    OpenUrlCrossRefPubMed
  53. ↵
    1. J. Schindelin,
    2. C. T. Rueden,
    3. M. C. Hiner,
    4. K. W. Eliceiri
    , The ImageJ ecosystem: An open platform for biomedical image analysis. Mol. Reprod. Dev. 82, 518–529 (2015).
    OpenUrlCrossRefPubMed
  54. ↵
    1. J. Schindelin et al
    ., Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
    OpenUrlCrossRefPubMed

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

Subscribers, for more details, please visit our Subscriptions FAQ.

Please click here to log into the PNAS submission website.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Pyridoxal kinase inhibition by artemisinins down-regulates inhibitory neurotransmission
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Pyridoxal kinase inhibition by artemisinins down-regulates inhibitory neurotransmission
Vikram Babu Kasaragod, Anabel Pacios-Michelena, Natascha Schaefer, Fang Zheng, Nicole Bader, Christian Alzheimer, Carmen Villmann, Hermann Schindelin
Proceedings of the National Academy of Sciences Dec 2020, 117 (52) 33235-33245; DOI: 10.1073/pnas.2008695117

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Pyridoxal kinase inhibition by artemisinins down-regulates inhibitory neurotransmission
Vikram Babu Kasaragod, Anabel Pacios-Michelena, Natascha Schaefer, Fang Zheng, Nicole Bader, Christian Alzheimer, Carmen Villmann, Hermann Schindelin
Proceedings of the National Academy of Sciences Dec 2020, 117 (52) 33235-33245; DOI: 10.1073/pnas.2008695117
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 117 (52)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Biological Sciences
  • Biochemistry

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Materials and Methods
    • Data Availability.
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Surgeons hands during surgery
Inner Workings: Advances in infectious disease treatment promise to expand the pool of donor organs
Despite myriad challenges, clinicians see room for progress.
Image credit: Shutterstock/David Tadevosian.
Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Double helix
Journal Club: Noncoding DNA shown to underlie function, cause limb malformations
Using CRISPR, researchers showed that a region some used to label “junk DNA” has a major role in a rare genetic disorder.
Image credit: Nathan Devery.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Birds nestling on tree branches
Parent–offspring conflict in songbird fledging
Some songbird parents might improve their own fitness by manipulating their offspring into leaving the nest early, at the cost of fledgling survival, a study finds.
Image credit: Gil Eckrich (photographer).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490