Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

Low potential for evolutionary rescue from climate change in a tropical fish

View ORCID ProfileRachael Morgan, View ORCID ProfileMette H. Finnøen, View ORCID ProfileHenrik Jensen, View ORCID ProfileChristophe Pélabon, and View ORCID ProfileFredrik Jutfelt
  1. aDepartment of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway;
  2. bCentre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

See allHide authors and affiliations

PNAS December 29, 2020 117 (52) 33365-33372; first published December 14, 2020; https://doi.org/10.1073/pnas.2011419117
Rachael Morgan
aDepartment of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Rachael Morgan
  • For correspondence: rachael.morgan@glasgow.ac.uk
Mette H. Finnøen
aDepartment of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Mette H. Finnøen
Henrik Jensen
bCentre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Henrik Jensen
Christophe Pélabon
bCentre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Christophe Pélabon
Fredrik Jutfelt
aDepartment of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Fredrik Jutfelt
  1. Edited by Nils Chr. Stenseth, University of Oslo, Oslo, Norway, and approved November 4, 2020 (received for review June 3, 2020)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

There is currently great concern about the ability of organisms to adapt to warmer environments. During heat waves, upper thermal tolerance is often critical for survival, but it is largely unknown how rapidly tolerance can evolve, especially in vertebrates. We artificially selected on upper thermal tolerance in a tropical fish to see whether and how quickly thermal tolerance evolves, and how warm acclimation prior to a thermal challenge alters this evolutionary process. Upper thermal tolerance evolved but at a slow rate toward higher temperature. Furthermore, acclimation capacity decreased in the lines selected for higher thermal tolerance. These results suggest that tropical fishes will struggle to adapt in pace with the current climate warming.

Abstract

Climate change is increasing global temperatures and intensifying the frequency and severity of extreme heat waves. How organisms will cope with these changes depends on their inherent thermal tolerance, acclimation capacity, and ability for evolutionary adaptation. Yet, the potential for adaptation of upper thermal tolerance in vertebrates is largely unknown. We artificially selected offspring from wild-caught zebrafish (Danio rerio) to increase (Up-selected) or decrease (Down-selected) upper thermal tolerance over six generations. Selection to increase upper thermal tolerance was also performed on warm-acclimated fish to test whether plasticity in the form of inducible warm tolerance also evolved. Upper thermal tolerance responded to selection in the predicted directions. However, compared to the control lines, the response was stronger in the Down-selected than in the Up-selected lines in which evolution toward higher upper thermal tolerance was slow (0.04 ± 0.008 °C per generation). Furthermore, the scope for plasticity resulting from warm acclimation decreased in the Up-selected lines. These results suggest the existence of a hard limit in upper thermal tolerance. Considering the rate at which global temperatures are increasing, the observed rates of adaptation and the possible hard limit in upper thermal tolerance suggest a low potential for evolutionary rescue in tropical fish living at the edge of their thermal limits.

  • CTmax
  • artificial selection
  • asymmetrical response
  • global warming
  • teleost

Footnotes

  • ↵1To whom correspondence may be addressed. Email: rachael.morgan{at}glasgow.ac.uk.
  • Author contributions: R.M., M.H.F., H.J., C.P., and F.J. designed research; R.M., M.H.F., and F.J. performed research; R.M. analyzed data; R.M., M.H.F., H.J., C.P., and F.J. wrote the paper; and F.J. conceived the experiment.

  • The authors declare no competing interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2011419117/-/DCSupplemental.

Data Availability.

All data and code are freely available on Figshare at: https://figshare.com/articles/dataset/Dataset_and_R_script_for_Low_potential_for_evolutionary_rescue_from_climate_change_in_a_tropical_fish_/12847541/1 (64).

Published under the PNAS license.

View Full Text

References

  1. 1.↵
    1. IPCC
    , Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (Cambridge University Press, Cambridge, UK and New York, 2013), doi:10.1017/CBO9781107415324.
    OpenUrlCrossRef
  2. 2.↵
    1. G. A. Meehl,
    2. C. Tebaldi
    , More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997 (2004).
    OpenUrlAbstract/FREE Full Text
  3. 3.↵
    1. M. Angilletta
    , Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, 2009).
  4. 4.↵
    1. A. R. Gunderson,
    2. J. H. Stillman
    , Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. Biol. Sci. 282, 20150401 (2015).
    OpenUrlCrossRefPubMed
  5. 5.↵
    1. R. B. Huey et al
    ., Predicting organismal vulnerability to climate warming: Roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 1665–1679 (2012).
    OpenUrlCrossRefPubMed
  6. 6.↵
    1. S. E. Williams,
    2. L. P. Shoo,
    3. J. L. Isaac,
    4. A. A. Hoffmann,
    5. G. Langham
    , Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol. 6, 2621–2626 (2008).
    OpenUrlCrossRefPubMed
  7. 7.↵
    1. G. Woodward,
    2. D. M. Perkins,
    3. L. E. Brown
    , Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 2093–2106 (2010).
    OpenUrlCrossRefPubMed
  8. 8.↵
    1. C. A. Deutsch et al
    ., Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. U.S.A. 105, 6668–6672 (2008).
    OpenUrlAbstract/FREE Full Text
  9. 9.↵
    1. J. M. Sunday,
    2. A. E. Bates,
    3. N. K. Dulvy
    , Thermal tolerance and the global redistribution of animals. Nat. Clim. Chang. 2, 686–690 (2012).
    OpenUrl
  10. 10.↵
    1. A. Genin,
    2. L. Levy,
    3. G. Sharon,
    4. D. E. Raitsos,
    5. A. Diamant
    , Rapid onsets of warming events trigger mass mortality of coral reef fish. Proc. Natl. Acad. Sci. USA 117, 25378–25385 (2020).
    OpenUrlAbstract/FREE Full Text
  11. 11.↵
    1. W. E. Bradshaw,
    2. C. M. Holzapfel
    , Climate change. Evolutionary response to rapid climate change. Science 312, 1477–1478 (2006).
    OpenUrlAbstract/FREE Full Text
  12. 12.↵
    1. G. W. Gilchrist,
    2. R. B. Huey
    , The direct response of Drosophila melanogaster to selection on knockdown temperature. Heredity 83, 15–29 (1999).
    OpenUrlCrossRefPubMed
  13. 13.↵
    1. A. A. Hoffmann,
    2. S. L. Chown,
    3. S. Clusella‐Trullas
    , Upper thermal limits in terrestrial ectotherms: How constrained are they? Funct. Ecol. 27, 934–949 (2013).
    OpenUrl
  14. 14.↵
    1. E. Sandblom et al
    ., Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings. Nat. Commun. 7, 11447 (2016).
    OpenUrlCrossRefPubMed
  15. 15.↵
    1. D. Houle
    , Comparing evolvability and variability of quantitative traits. Genetics 130, 195–204 (1992).
    OpenUrlAbstract/FREE Full Text
  16. 16.↵
    1. C. D. Becker,
    2. R. G. Genoway
    , Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater fish. Environ. Biol. Fishes 4, 245 (1979).
    OpenUrlCrossRef
  17. 17.↵
    1. R. Morgan et al
    ., Are model organisms representative for climate change research? Testing thermal tolerance in wild and laboratory zebrafish populations. Conserv. Physiol. 7, coz036 (2019).
    OpenUrl
  18. 18.↵
    1. F. Seebacher,
    2. C. R. White,
    3. C. E. Franklin
    , Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Chang. 5, 61–66 (2015).
    OpenUrl
  19. 19.↵
    1. C. Kovach-Orr,
    2. G. F. Fussmann
    , Evolutionary and plastic rescue in multitrophic model communities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120084 (2013).
    OpenUrlCrossRefPubMed
  20. 20.↵
    1. L.-M. Chevin,
    2. R. Lande
    , When do adaptive plasticity and genetic evolution prevent extinction of a density-regulated population? Evolution 64, 1143–1150 (2010).
    OpenUrlCrossRefPubMed
  21. 21.↵
    1. R. Lande
    , Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J. Evol. Biol. 22, 1435–1446 (2009).
    OpenUrlCrossRefPubMed
  22. 22.↵
    1. M. J. West-Eberhard
    , Developmental Plasticity and Evolution (Oxford University Press, 2003).
  23. 23.↵
    1. G. Bell
    , Evolutionary rescue and the limits of adaptation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120080 (2013).
    OpenUrlCrossRefPubMed
  24. 24.↵
    1. S. M. Carlson,
    2. C. J. Cunningham,
    3. P. A. H. Westley
    , Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).
    OpenUrlCrossRefPubMed
  25. 25.↵
    1. K. A. Mitchell,
    2. A. A. Hoffmann
    , Thermal ramping rate influences evolutionary potential and species differences for upper thermal limits in Drosophila. Funct. Ecol. 24, 694–700 (2016).
    OpenUrl
  26. 26.↵
    1. S. E. Diamond,
    2. L. Chick,
    3. A. Perez,
    4. S. A. Strickler,
    5. R. A. Martin
    , Rapid evolution of ant thermal tolerance across an urban-rural temperature cline. Biol. J. Linn. Soc. Lond. 121, 248–257 (2017).
    OpenUrlCrossRef
  27. 27.↵
    1. G. McColl,
    2. A. A. Hoffmann,
    3. S. W. McKechnie
    , Response of two heat shock genes to selection for knockdown heat resistance in Drosophila melanogaster. Genetics 143, 1615–1627 (1996).
    OpenUrlAbstract/FREE Full Text
  28. 28.↵
    1. P. L. Klerks,
    2. G. N. Athrey,
    3. P. L. Leberg
    , Response to selection for increased heat tolerance in a small fish species, with the response decreased by a population bottleneck. Front. Ecol. Evol. 7, 270 (2019).
    OpenUrl
  29. 29.↵
    1. A. N. Geerts et al
    ., Rapid evolution of thermal tolerance in the water flea Daphnia. Nat. Clim. Chang. 5, 665–668 (2015).
    OpenUrl
  30. 30.↵
    1. K. I. Brans et al
    ., The heat is on: Genetic adaptation to urbanization mediated by thermal tolerance and body size. Glob. Change Biol. 23, 5218–5227 (2017).
    OpenUrl
  31. 31.↵
    1. G. K. Meffe,
    2. S. C. Weeks,
    3. M. Mulvey,
    4. K. L. Kandl
    , Genetic differences in thermal tolerance of eastern mosqyitofish (Gambusia holbrooki; Poeciliidae) from ambient and thermal ponds. Can. J. Fish. Aquat. Sci. 52, 2704–2711 (1995).
    OpenUrl
  32. 32.↵
    1. R. A. Krebs,
    2. V. Loeschcke
    , Estimating heritability in a threshold trait: Heat-shock tolerance in Drosophila buzzatii. Heredity 79, 252–259 (1997).
    OpenUrlCrossRefPubMed
  33. 33.↵
    1. C. F. Baer,
    2. J. Travis
    , Direct and correlated responses to artificial selection on acute thermal stress tolerance in a livebearing fish. Evolution 54, 238–244 (2000).
    OpenUrlCrossRefPubMed
  34. 34.↵
    1. C. M. Doyle,
    2. P. L. Leberg,
    3. P. L. Klerks
    , Heritability of heat tolerance in a small livebearing fish, Heterandria formosa. Ecotoxicology 20, 535–542 (2011).
    OpenUrlCrossRefPubMed
  35. 35.↵
    1. P. M. Schulte,
    2. T. M. Healy,
    3. N. A. Fangue
    , Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integr. Comp. Biol. 51, 691–702 (2011).
    OpenUrlCrossRefPubMed
  36. 36.↵
    1. G. M. L. Perry,
    2. C. M. Martyniuk,
    3. M. M. Ferguson,
    4. R. G. Danzmann
    , Genetic parameters for upper thermal tolerance and growth-related traits in rainbow trout (Oncorhynchus mykiss). Aquaculture 250, 120–128 (2005).
    OpenUrlCrossRef
  37. 37.↵
    1. T. Zhang et al
    ., Genetic parameter estimation for juvenile growth and upper thermal tolerance in turbot (Scophthalmus maximus Linnaeus). Acta Oceanol. Sin. 33, 106–110 (2014).
    OpenUrl
  38. 38.↵
    1. S. R. Carpenter,
    2. S. G. Fisher,
    3. N. B. Grimm,
    4. J. F. Kitchell
    , Global change and freshwater ecosystems. Annu. Rev. Ecol. Syst. 23, 119–139 (1992).
    OpenUrlCrossRef
  39. 39.↵
    1. R. Morgan
    , “Physiological plasticity and evolution of thermal performance in zebrafish,” PhD thesis, Norwegain University of Science and Technology, Trondheim, Norway (2020).
  40. 40.↵
    1. J. Sundin et al
    ., On the observation of Wild Zebrafish (Danio rerio) in India. Zebrafish 16, 546–553 (2019).
    OpenUrlCrossRef
  41. 41.↵
    1. W. I. Lutterschmidt,
    2. V. H. Hutchison
    , The critical thermal maximum: History and critique. Can. J. Zool. 75, 1561–1574 (1997).
    OpenUrlCrossRef
  42. 42.↵
    1. R. Morgan,
    2. M. H. Finnøen,
    3. F. Jutfelt
    , CT max is repeatable and doesn’t reduce growth in zebrafish. Sci. Rep. 8, 1–8 (2018).
    OpenUrlCrossRefPubMed
  43. 43.↵
    1. E. Åsheim,
    2. A. Andreassen,
    3. R. Morgan,
    4. F. Jutfelt
    , Rapid-warming tolerance correlates with tolerance to slow warming but not growth at non-optimal temperatures in zebrafish. J. Exp. Biol., doi:10.1242/jeb.229195 (2020).
    OpenUrlCrossRef
  44. 44.↵
    1. G. N. Somero
    , Adaptation of enzymes to temperature: Searching for basic “strategies”. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 139, 321–333 (2004).
    OpenUrlCrossRefPubMed
  45. 45.↵
    1. K. M. Wegner,
    2. M. Kalbe,
    3. M. Milinski,
    4. T. B. Reusch
    , Mortality selection during the 2003 European heat wave in three-spined sticklebacks: Effects of parasites and MHC genotype. BMC Evol. Biol. 8, 124 (2008).
    OpenUrlCrossRefPubMed
  46. 46.↵
    1. R. Gomulkiewicz,
    2. R. D. Holt
    , When does evolution by natural selection prevent extinction? Evolution 49, 201–207 (1995).
    OpenUrlCrossRefPubMed
  47. 47.↵
    1. G. Bell
    , Evolutionary rescue. Annu. Rev. Ecol. Evol. Syst. 48, 605–627 (2017).
    OpenUrl
  48. 48.↵
    1. N. G. Hairston,
    2. S. P. Ellner,
    3. M. A. Geber,
    4. T. Yoshida,
    5. J. A. Fox
    , Rapid evolution and the convergence of ecological and evolutionary time. Ecol. Lett. 8, 1114–1127 (2005).
    OpenUrlCrossRef
  49. 49.↵
    1. T. F. Hansen,
    2. C. Pélabon,
    3. D. Houle
    , Heritability is not evolvability. Evol. Biol. 38, 258 (2011).
    OpenUrlCrossRef
  50. 50.↵
    1. C. Pélabon,
    2. C. H. Hilde,
    3. S. Einum,
    4. M. Gamelon
    , On the use of the coefficient of variation to quantify and compare trait variation. Evol. Lett. 4, 180–188 (2020).
    OpenUrl
  51. 51.↵
    1. K. K. Murari,
    2. S. Ghosh,
    3. A. Patwardhan,
    4. E. Daly,
    5. K. Salvi
    , Intensification of future severe heat waves in India and their effect on heat stress and mortality. Reg. Environ. Change 15, 569–579 (2015).
    OpenUrlCrossRef
  52. 52.↵
    1. S. S. Kaushal et al
    ., Rising stream and river temperatures in the United States. Front. Ecol. Environ. 8, 461–466 (2010).
    OpenUrlCrossRef
  53. 53.↵
    1. B. W. Webb,
    2. F. Nobilis
    , Long-term changes in river temperature and the influence of climatic and hydrological factors. Hydrol. Sci. J. 52, 74–85 (2007).
    OpenUrlCrossRef
  54. 54.↵
    1. A. R. Whiteley et al
    ., Population genomics of wild and laboratory zebrafish (Danio rerio). Mol. Ecol. 20, 4259–4276 (2011).
    OpenUrlCrossRef
  55. 55.↵
    1. P. Gratton et al
    ., Allozyme and microsatellite genetic variation in natural samples of zebrafish, Danio rerio. J. Zool. Syst. Evol. Res. 42, 54–62 (2004).
    OpenUrl
  56. 56.↵
    1. S. Hangartner,
    2. A. A. Hoffmann
    , Evolutionary potential of multiple measures of upper thermal tolerance in Drosophila melanogaster. Funct. Ecol. 30, 442–452 (2016).
    OpenUrl
  57. 57.↵
    1. G. Massamba-N’Siala,
    2. D. Prevedelli,
    3. R. Simonini
    , Trans-generational plasticity in physiological thermal tolerance is modulated by maternal pre-reproductive environment in the polychaete Ophryotrocha labronica. J. Exp. Biol. 217, 2004–2012 (2014).
    OpenUrlAbstract/FREE Full Text
  58. 58.↵
    1. S. Hutter,
    2. D. J. Penn,
    3. S. Magee,
    4. S. M. Zala
    , Reproductive behaviour of wild zebrafish (Danio rerio) in large tanks. Behaviour 147, 641–660 (2010).
    OpenUrlCrossRef
  59. 59.↵
    1. J. L. Lush
    , Animal Breeding Plans (Iowa State College Press, 1937).
  60. 60.↵
    1. B. Walsh,
    2. M. Lynch
    , Evolution and Selection of Quantitative Traits (Oxford University Press, 2018).
  61. 61.↵
    1. T. D. Clark,
    2. E. Sandblom,
    3. F. Jutfelt
    , Aerobic scope measurements of fishes in an era of climate change: Respirometry, relevance and recommendations. J. Exp. Biol. 216, 2771–2782 (2013).
    OpenUrlAbstract/FREE Full Text
  62. 62.↵
    1. F. Jutfelt et al
    ., Oxygen- and capacity-limited thermal tolerance: Blurring ecology and physiology. J. Exp. Biol. 221, jeb169615 (2018).
    OpenUrlFREE Full Text
  63. 63.↵
    1. F. Jutfelt et al
    ., Brain cooling marginally increases acute upper thermal tolerance in Atlantic cod. J. Exp. Biol. 222, jeb208249 (2019).
    OpenUrlAbstract/FREE Full Text
  64. 64.↵
    1. R. Morgan,
    2. M. H. Finnøen,
    3. H. Jensen,
    4. C. Pélabon,
    5. F. Jutfelt
    , Dataset and R script for “Low potential for evolutionary rescue from climate change in a tropical fish.” Figshare. https://figshare.com/articles/dataset/Dataset_and_R_script_for_Low_potential_for_evolutionary_rescue_from_climate_change_in_a_tropical_fish_/12847541. Deposited 18 September 2020.

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

Subscribers, for more details, please visit our Subscriptions FAQ.

Please click here to log into the PNAS submission website.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Low potential for evolutionary rescue from climate change in a tropical fish
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Low potential for evolutionary rescue from climate change in a tropical fish
Rachael Morgan, Mette H. Finnøen, Henrik Jensen, Christophe Pélabon, Fredrik Jutfelt
Proceedings of the National Academy of Sciences Dec 2020, 117 (52) 33365-33372; DOI: 10.1073/pnas.2011419117

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Low potential for evolutionary rescue from climate change in a tropical fish
Rachael Morgan, Mette H. Finnøen, Henrik Jensen, Christophe Pélabon, Fredrik Jutfelt
Proceedings of the National Academy of Sciences Dec 2020, 117 (52) 33365-33372; DOI: 10.1073/pnas.2011419117
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley

Article Classifications

  • Biological Sciences
  • Evolution
Proceedings of the National Academy of Sciences: 117 (52)
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Methods
    • Data Availability.
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Surgeons hands during surgery
Inner Workings: Advances in infectious disease treatment promise to expand the pool of donor organs
Despite myriad challenges, clinicians see room for progress.
Image credit: Shutterstock/David Tadevosian.
Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Double helix
Journal Club: Noncoding DNA shown to underlie function, cause limb malformations
Using CRISPR, researchers showed that a region some used to label “junk DNA” has a major role in a rare genetic disorder.
Image credit: Nathan Devery.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Birds nestling on tree branches
Parent–offspring conflict in songbird fledging
Some songbird parents might improve their own fitness by manipulating their offspring into leaving the nest early, at the cost of fledgling survival, a study finds.
Image credit: Gil Eckrich (photographer).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490