Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

Strong metal–metal Pauli repulsion leads to repulsive metallophilicity in closed-shell d8 and d10 organometallic complexes

View ORCID ProfileQingyun Wan, View ORCID ProfileJun Yang, Wai-Pong To, and View ORCID ProfileChi-Ming Che
  1. aState Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China;
  2. bShenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen 518053, China

See allHide authors and affiliations

PNAS January 5, 2021 118 (1) e2019265118; https://doi.org/10.1073/pnas.2019265118
Qingyun Wan
aState Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Qingyun Wan
  • For correspondence: wendyqyw@hku.hk juny@hku.hk cmche@hku.hk
Jun Yang
aState Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jun Yang
  • For correspondence: wendyqyw@hku.hk juny@hku.hk cmche@hku.hk
Wai-Pong To
aState Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chi-Ming Che
aState Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China;
bShenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen 518053, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Chi-Ming Che
  • For correspondence: wendyqyw@hku.hk juny@hku.hk cmche@hku.hk
  1. Contributed by Chi-Ming Che, November 10, 2020 (sent for review September 14, 2020; reviewed by Garnet Chan, Stephen Hashmi, Zhenyang Lin, and Ricardo Mata)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

Metallophilicity is widely regarded as a driving force in the self-assembly of closed-shell d8 and d10 metal complexes. The self-assembled metal complexes have applications in organic semiconductors, biosensing, organic light-emitting diodes, and photocatalysis. The attractive metallophilicity in the ground state is believed to originate from spd orbital hybridization or electron correlation interaction strengthened by relativistic effect. These two models have remained controversial for a long time. Our findings conclude that the M–M′ closed-shell interaction is repulsive due to strong M–M′ Pauli repulsion strengthened by (n + 1)s-nd orbital hybridization and relativistic effect. The M–M′ repulsion is counterbalanced by the ligand–ligand dispersion and electrostatic interaction, leading to a close unsupported M–M′ distance.

Abstract

Metallophilicity is defined as the interaction among closed-shell metal centers, the origin of which remains controversial, particularly for the roles of spd orbital hybridization (mixing of the spd atomic orbitals of the metal atom in the molecular orbitals of metal complex) and the relativistic effect. Our studies reveal that at close M–M′ distances in the X-ray crystal structures of d8 and d10 organometallic complexes, M–M′ closed-shell interactions are repulsive in nature due to strong M–M′ Pauli repulsion. The relativistic effect facilitates (n + 1)s-nd and (n + 1)p-nd orbital hybridization of the metal atom, where (n + 1)s-nd hybridization induces strong M–M′ Pauli repulsion and repulsive M–M′ orbital interaction, and (n + 1)p-nd hybridization suppresses M–M′ Pauli repulsion. This model is validated by both DFT (density functional theory) and high-level coupled-cluster singles and doubles with perturbative triples computations and is used to account for the fact that the intermolecular or intramolecular Ag–Ag′ distance is shorter than the Au–Au′ distance, where a weaker Ag–Ag′ Pauli repulsion plays an important role. The experimental studies verify the importance of ligands in intermolecular interactions. Although the M–M′ interaction is repulsive in nature, the linear coordination geometry of the d10 metal complex suppresses the L–L′ (ligand–ligand) Pauli repulsion while retaining the strength of the attractive L–L′ dispersion, leading to a close unsupported M–M′ distance that is shorter than the sum of the van der Waals radius (rvdw) of the metal atoms.

  • metal–metal closed-shell interaction
  • bond theory
  • Pauli repulsion

Footnotes

  • ↵1To whom correspondence may be addressed. Email: wendyqyw{at}hku.hk, juny{at}hku.hk, or cmche{at}hku.hk.
  • Author contributions: Q.W. and C.-M.C. designed research; Q.W., J.Y., and W.-P.T. performed research; Q.W., J.Y., and C.-M.C. analyzed data; and Q.W., J.Y., and C.-M.C. wrote the paper.

  • Reviewers: G.C., California Institute of Technology; S.H., University of Heidelberg; Z.L., The Hong Kong University of Science and Technology; and R.M., University of Göttingen.

  • The authors declare no competing interest.

  • This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019265118/-/DCSupplemental.

Data Availability.

All study data are included in the article and SI Appendix.

Published under the PNAS license.

View Full Text

References

  1. ↵
    1. P. Pyykkö
    , Strong closed-shell interactions in inorganic chemistry. Chem. Rev. 97, 597–636 (1997).
    OpenUrlCrossRefPubMed
  2. ↵
    1. H. Schmidbaur
    , Ludwig Mond lecture. High-carat gold compounds. Chem. Soc. Rev. 24, 391–400 (1995).
    OpenUrlCrossRef
  3. ↵
    1. S. T. Liddle
    1. S. T. Liddle
    , “Group 11 metal–metal bonds” in Molecular Metal-Metal Bonds, S. T. Liddle, Ed. (Wiley-VCH, 2015), pp. 397–428.
  4. ↵
    1. K. R. Mann,
    2. J. Gordon,
    3. H. B. Gray
    , Characterization of oligomers of tetrakis(phenyl isocyanide) rhodium(I) in acetonitrile solution. J. Am. Chem. Soc. 97, 3553–3555 (1975).
    OpenUrl
  5. ↵
    1. H. Schmidbaur,
    2. A. Schier
    , A briefing on aurophilicity. Chem. Soc. Rev. 37, 1931–1951 (2008).
    OpenUrlCrossRefPubMed
  6. ↵
    1. H. Schmidbaur,
    2. A. Schier
    , Aurophilic interactions as a subject of current research: An up-date. Chem. Soc. Rev. 41, 370–412 (2012).
    OpenUrlPubMed
  7. ↵
    1. H. Schmidbaur,
    2. A. Schier
    , Argentophilic interactions. Angew. Chem. Int. Ed. Engl. 54, 746–784 (2015).
    OpenUrl
  8. ↵
    1. N. V. S. Harisomayajula,
    2. S. Makovetskyi,
    3. Y. C. Tsai
    , Cuprophilic interactions in and between molecular entities. Chemistry 25, 8936–8954 (2019).
    OpenUrl
  9. ↵
    1. V. W.-W. Yam,
    2. V. K.-M. Au,
    3. S. Y.-L. Leung
    , Light-emitting self-assembled materials based on d(8) and d(10) transition metal complexes. Chem. Rev. 115, 7589–7728 (2015).
    OpenUrlCrossRefPubMed
  10. ↵
    1. Y. Pan,
    2. J. T. Mague,
    3. M. J. Fink
    , Synthesis, structure, and unusual reactivity of a d10-d10 palladium(0) dimer. J. Am. Chem. Soc. 115, 3842–3843 (1993).
    OpenUrl
  11. ↵
    1. S. Otsuka
    , Chemistry of platinum and palladium compounds of bulky phosphines. J. Organomet. Chem. 200, 191–205 (1980).
    OpenUrl
  12. ↵
    1. Q. Wan,
    2. W.-P. To,
    3. C. Yang,
    4. C.-M. Che
    , The metal-metal-to-ligand charge transfer excited state and supramolecular polymerization of luminescent pincer PdII -isocyanide complexes. Angew. Chem. Int. Ed. Engl. 57, 3089–3093 (2018).
    OpenUrl
  13. ↵
    1. F. Scherbaum et al
    ., “Aurophilicity” as a consequence of relativistic effects: The Hexakis(triphenylphosphaneaurio) methane dication [(Ph3PAu)6C]2+. Angew. Chem. Int. Ed. Engl. 27, 1544–1546 (1988).
    OpenUrlCrossRef
  14. ↵
    1. P. Pyykkö,
    2. J. Li,
    3. N. Runeberg
    , Predicted ligand dependence of the Au(I)···Au(I) attraction in (XAuPH3)2. Chem. Phys. Lett. 218, 133–138 (1994).
    OpenUrl
  15. ↵
    1. K. M. Anderson,
    2. A. E. Goeta,
    3. J. W. Steed
    , Au...Au interactions: Z' > 1 behavior and structural analysis. Inorg. Chem. 46, 6444–6451 (2007).
    OpenUrlPubMed
  16. ↵
    1. M. J. Katz,
    2. K. Sakai,
    3. D. B. Leznoff
    , The use of aurophilic and other metal-metal interactions as crystal engineering design elements to increase structural dimensionality. Chem. Soc. Rev. 37, 1884–1895 (2008).
    OpenUrl
  17. ↵
    1. C.-M. Che et al
    ., Spectroscopic evidence for argentophilicity in structurally characterized luminescent binuclear silver(I) complexes. J. Am. Chem. Soc. 122, 2464–2468 (2000).
    OpenUrl
  18. ↵
    1. M. J. Mayoral et al
    ., Cooperative supramolecular polymerization driven by metallophilic Pd···Pd interactions. J. Am. Chem. Soc. 135, 2148–2151 (2013).
    OpenUrlCrossRefPubMed
  19. ↵
    1. J. E. Bercaw et al
    ., Electronic structures of Pd(II) dimers. Inorg. Chem. 49, 1801–1810 (2010).
    OpenUrlPubMed
  20. ↵
    1. P. Pyykkö,
    2. N. Runeberg,
    3. F. Mendizabal
    , Theory of the d10-d10 closed-shell attraction: 1. Dimers near equilibrium. Chemistry 3, 1451–1457 (1997).
    OpenUrl
  21. ↵
    1. H. L. Hermann,
    2. G. Boche,
    3. P. Schwerdtfeger
    , Metallophilic interactions in closed-shell copper(I) compounds–A theoretical study. Chemistry 7, 5333–5342 (2001).
    OpenUrl
  22. ↵
    1. S. Grimme,
    2. J.-P. Djukic
    , Cation-cation “attraction”: When London dispersion attraction wins over Coulomb repulsion. Inorg. Chem. 50, 2619–2628 (2011).
    OpenUrlPubMed
  23. ↵
    1. B. Pinter,
    2. L. Broeckaert,
    3. J. Turek,
    4. A. Růžička,
    5. F. De Proft
    , Dimers of N-heterocyclic carbene copper, silver, and gold halides: Probing metallophilic interactions through electron density based concepts. Chemistry 20, 734–744 (2014).
    OpenUrl
  24. ↵
    1. B. Assadollahzadeh,
    2. P. Schwerdtfeger
    , A comparison of metallophilic interactions in group 11 [X–M–PH3]n (n = 2-3) complex halides (M = Cu, Ag, Au; X = Cl, Br, I) from density functional theory. Chem. Phys. Lett. 462, 222–228 (2008).
    OpenUrl
  25. ↵
    1. A. Otero-de-la-Roza,
    2. J. D. Mallory,
    3. E. R. Johnson
    , Metallophilic interactions from dispersion-corrected density-functional theory. J. Chem. Phys. 140, 18A504 (2014).
    OpenUrl
  26. ↵
    1. P. Schwerdtfeger,
    2. A. E. Bruce,
    3. M. R. Bruce
    , Theoretical studies on the photochemistry of the cis-to-trans conversion in dinuclear gold halide bis(diphenylphosphino) ethylene complexes. J. Am. Chem. Soc. 120, 6587–6597 (1998).
    OpenUrl
  27. ↵
    1. P. K. Mehrotra,
    2. R. Hoffmann
    , Copper(I)-copper(I) interactions. Bonding relationships in d10-d10 systems. Inorg. Chem. 17, 2187–2189 (1978).
    OpenUrlCrossRef
  28. ↵
    1. A. Dedieu,
    2. R. Hoffmann
    , Platinum(0)-platinum(0) dimers. Bonding relationships in a d10-d10 system. J. Am. Chem. Soc. 100, 2074–2079 (1978).
    OpenUrl
  29. ↵
    1. Y. Jiang,
    2. S. Alvarez,
    3. R. Hoffmann
    , Binuclear and polymeric gold(I) complexes. Inorg. Chem. 24, 749–757 (1985).
    OpenUrl
  30. ↵
    1. P. Pyykkö,
    2. Y. Zhao
    , Ab initio calculations on the (ClAuPH3)2 dimer with relativistic pseudopotential: Is the “aurophilic attraction” a correlation effect? Angew. Chem. Int. Ed. Engl. 30, 604–605 (1991).
    OpenUrl
  31. ↵
    1. M. Andrejić,
    2. R. A. Mata
    , Study of ligand effects in aurophilic interactions using local correlation methods. Phys. Chem. Chem. Phys. 15, 18115–18122 (2013).
    OpenUrl
  32. ↵
    1. M. B. Brands,
    2. J. Nitsch,
    3. C. F. Guerra
    , Relevance of orbital interactions and Pauli repulsion in the metal-metal bond of coinage metals. Inorg. Chem. 57, 2603–2608 (2018).
    OpenUrl
  33. ↵
    1. Q. Zheng,
    2. S. Borsley,
    3. G. S. Nichol,
    4. F. Duarte,
    5. S. L. Cockroft
    , The energetic significance of metallophilic interactions. Angew. Chem. Int. Ed. Engl. 58, 12617–12623 (2019).
    OpenUrl
  34. ↵
    1. P. Pyykkö
    , Theoretical chemistry of gold. III. Chem. Soc. Rev. 37, 1967–1997 (2008).
    OpenUrlCrossRefPubMed
  35. ↵
    1. L. Magnko et al
    ., A comparison of metallophilic attraction in (X-M-PH3)2 (M = Cu, Ag, Au; X = H, Cl). Phys. Chem. Chem. Phys. 4, 1006–1013 (2002).
    OpenUrl
  36. ↵
    1. R.-F. Liu et al
    ., Aurophilic interactions from wave function, symmetry-adapted perturbation theory, and rangehybrid approaches. J. Chem. Theory Comput. 7, 2399–2407 (2011).
    OpenUrl
  37. ↵
    1. N. Runeberg,
    2. M. Schütz,
    3. H.-J. Werner
    , The aurophilic attraction as interpreted by local correlation methods. J. Chem. Phys. 110, 7210–7215 (1999).
    OpenUrl
  38. ↵
    1. E. O’Grady,
    2. N. Kaltsoyannis
    , Does metallophilicity increase or decrease down group 11? Computational investigations of [Cl-M-PH3]2 (M = Cu, Ag, Au, [111]). Phys. Chem. Chem. Phys. 6, 680–687 (2004).
    OpenUrl
  39. ↵
    1. L. Ray,
    2. M. M. Shaikh,
    3. P. Ghosh
    , Shorter argentophilic interaction than aurophilic interaction in a pair of dimeric {(NHC)MCl}2 (M = Ag, Au) complexes supported over a N/O-functionalized N-heterocyclic carbene (NHC) ligand. Inorg. Chem. 47, 230–240 (2008).
    OpenUrlPubMed
  40. ↵
    1. P. Pyykkö
    , Relativistic effects in chemistry: More common than you thought. Annu. Rev. Phys. Chem. 63, 45–64 (2012).
    OpenUrlCrossRefPubMed
  41. ↵
    1. G. F. Caramori et al
    ., Cyclic trinuclear copper(I), silver(I), and gold(I) complexes: A theoretical insight. Dalton Trans. 44, 377–385 (2015).
    OpenUrl
  42. ↵
    1. W. Bensch,
    2. M. Prelati,
    3. W. Ludwig
    , A novel three-co-ordinate di-gold(I) diphosphine complex [Au2(Me2PCH2PMe2)3](BF4)2 0.5C7H8: X-ray crystal and molecular structure. J. Chem. Soc. Chem. Commun., 1762–1763 (1986).
  43. ↵
    1. D. Perreault et al
    ., Silver and gold dimers. Crystal and molecular structure of Ag2(dmpm)2Br2 and [Au2(dmpm)2](PF6)2 and relation between metal-metal force constants and metal-metal separations. Inorg. Chem. 31, 695–702 (1992).
    OpenUrl
  44. ↵
    1. M. V. Baker et al
    ., Synthesis and structural characterisation of linear Au(I) N-heterocyclic carbene complexes: New analogues of the Au(I) phosphine drug Auranofin. J. Organomet. Chem. 690, 5625–5635 (2005).
    OpenUrlCrossRef
  45. ↵
    1. P. De Fremont et al
    ., Synthesis of well-defined N-heterocyclic carbene silver(I) complexes. Organometallics 24, 6301–6309 (2005).
    OpenUrl
  46. ↵
    1. D. Li et al
    ., Spectroscopic properties and crystal structures of luminescent linear tri-and tetra-nuclear gold(I) complexes with bis(diphenylphosphinomethyl) phenylphosphine ligand. J. Chem. Soc., Dalton Trans., 189–194 (1993).
  47. ↵
    1. W.-F. Fu,
    2. K.-C. Chan,
    3. V. M. Miskowski,
    4. C.-M. Che
    , The intrinsic 3[dσ*pσ] emission of binuclear Gold(I) complexes with two bridging diphosphane ligands lies in the near UV; Emissions in the visible region are due to exciplexes. Angew. Chem. Int. Ed. 38, 2783–2785 (1999).
    OpenUrlCrossRefPubMed
  48. ↵
    1. A. Bondi
    , van der Waals volumes and radii. J. Phys. Chem. 68, 441–451 (1964).
    OpenUrlCrossRef
  49. ↵
    1. P. Schwerdtfeger
    , Relativistic effects in properties of gold. Heteroatom Chem. Int. J. Main Group Elements 13, 578–584 (2002).
    OpenUrl
  50. ↵
    1. A. C. Tsipis
    , DFT challenge of intermetallic interactions: From metallophilicity and metallaromaticity to sextuple bonding. Coord. Chem. Rev. 345, 229–262 (2017).
    OpenUrl
  51. ↵
    1. M. Bursch et al
    ., Understanding and quantifying London dispersion effects in organometallic complexes. Acc. Chem. Res. 52, 258–266 (2019).
    OpenUrl
  52. ↵
    1. P. I. Dem’yanov,
    2. P. M. Polestshuk,
    3. V. V. Kostin
    , The nature of metal-metal interactions in dimeric hydrides and halides of group 11 elements in the light of high level relativistic calculations. Chemistry 23, 3257–3261 (2017).
    OpenUrl
  53. ↵
    1. L. P. Wolters,
    2. F. M. Bickelhaupt
    , Nonlinear d10-ML2 transition-metal complexes. ChemistryOpen 2, 106–114 (2013).
    OpenUrl
  54. ↵
    1. R. G. Maturana,
    2. M. P. Vargas,
    3. A. Muñoz-Castro
    , Survey of long d10-d10 metallophilic contacts in four-membered rings of Ag(I) and Au(I) supported by carbene-pyrazole mixed ligands. J. Phys. Chem. A 116, 8737–8743 (2012).
    OpenUrlPubMed
  55. ↵
    1. Y. Jean
    , Molecular Orbitals of Transition Metal Complexes (Oxford University Press, 2005).
  56. ↵
    1. J. H. J. M. S. GORDON
    , An approximate formula for the intermolecular Pauli repulsion between closed shell molecules. Mol. Phys. 89, 1313–1325 (1996).
    OpenUrl
  57. ↵
    1. F. Neese,
    2. A. Hansen,
    3. D. G. Liakos
    , Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis. J. Chem. Phys. 131, 064103 (2009).
    OpenUrlPubMed
  58. ↵
    1. A. Altun,
    2. F. Neese,
    3. G. Bistoni
    , Local energy decomposition analysis of hydrogen-bonded dimers within a domain-based pair natural orbital coupled cluster study. Beilstein J. Org. Chem. 14, 919–929 (2018).
    OpenUrl
  59. ↵
    1. P. Schwerdtfeger et al
    ., Relativistic effects in gold chemistry. I. Diatomic gold compounds. J. Chem. Phys. 91, 1762–1774 (1989).
    OpenUrlCrossRef
  60. ↵
    1. N. T. Tran et al
    ., Variation in crystallization conditions allows the isolation of trimeric as well as dimeric and monomeric forms of [(alkyl isocyanide)4RhI]+. Chem. Commun. (Camb.), 1130–1132 (2006).
  61. ↵
    1. E. Caldeweyher et al
    ., A generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys. 150, 154122 (2019).
    OpenUrl
  62. ↵
    1. K. M.-C. Wong,
    2. V. W.-W. Yam
    , Self-assembly of luminescent alkynylplatinum(II) terpyridyl complexes: Modulation of photophysical properties through aggregation behavior. Acc. Chem. Res. 44, 424–434 (2011).
    OpenUrlCrossRefPubMed
  63. ↵
    1. M. Jansen
    , Homoatomic d10-d10 interactions: Their effects on structure and chemical and physical properties. Angew. Chem. Int. Ed. Engl. 26, 1098–1110 (1987).
    OpenUrl
  64. ↵
    1. A. Wuttke,
    2. M. Feldt,
    3. R. A. Mata
    , All that binds is not gold—The relative weight of aurophilic interactions in complex formation. J. Phys. Chem. A 122, 6918–6925 (2018).
    OpenUrl
  65. ↵
    1. R. Pollice,
    2. P. Chen
    , A universal quantitative descriptor of the dispersion interaction potential. Angew. Chem. Int. Ed. Engl. 58, 9758–9769 (2019).
    OpenUrlCrossRefPubMed
  66. ↵
    1. T. Ziegler,
    2. A. Rauk
    , A theoretical study of the ethylene-metal bond in complexes between copper (1+), silver (1+), gold (1+), platinum (0) or platinum (2+) and ethylene, based on the Hartree-Fock-Slater transition-state method. Inorg. Chem. 18, 1558–1565 (1979).
    OpenUrlCrossRef
  67. ↵
    1. T. Ziegler,
    2. A. Rauk
    , CO, CS, N2, PF3, and CNCH3 as σ donors and π acceptors. A theoretical study by the Hartree-Fock-Slater transition-state method. Inorg. Chem. 18, 1755–1759 (1979).
    OpenUrl
  68. ↵
    1. G. te Velde et al
    ., Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001).
    OpenUrlCrossRef
  69. ↵
    1. C. F. Guerra,
    2. J. G. Snijders,
    3. G. te Velde,
    4. E. J. Baerends
    , Towards an order-N DFT method. Theor. Chem. Acc. 99, 391–403 (1998).
    OpenUrl
  70. ↵
    1. E. van Lenthe,
    2. A. Ehlers,
    3. E.-J. Baerends
    , Geometry optimizations in the zero order regular approximation for relativistic effects. J. Chem. Phys. 110, 8943–8953 (1999).
    OpenUrl
  71. ↵
    1. E. van Lenthe,
    2. E.-J. Baerends,
    3. J. G. Snijders
    , Relativistic regular two-component Hamiltonians. J. Chem. Phys. 99, 4597–4610 (1993).
    OpenUrlCrossRef
  72. ↵
    1. E. van Lenthe,
    2. E.-J. Baerends,
    3. J. G. Snijders
    , Relativistic total energy using regular approximations. J. Chem. Phys. 101, 9783–9792 (1994).
    OpenUrlCrossRef
  73. ↵
    1. A. D. Becke
    , Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).
    OpenUrlCrossRef
  74. ↵
    1. C. Lee,
    2. W. Yang,
    3. R. G. Parr
    , Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter 37, 785–789 (1988).
    OpenUrlCrossRefPubMed
  75. ↵
    1. S. Grimme,
    2. J. Antony,
    3. S. Ehrlich,
    4. H. Krieg
    , A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
    OpenUrlCrossRefPubMed
  76. ↵
    1. S. Grimme,
    2. S. Ehrlich,
    3. L. Goerigk
    , Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).
    OpenUrlCrossRefPubMed
  77. ↵
    1. E. Van Lenthe,
    2. E. J. Baerends
    , Optimized Slater-type basis sets for the elements 1-118. J. Comput. Chem. 24, 1142–1156 (2003).
    OpenUrlCrossRefPubMed
  78. ↵
    1. K. Morokuma,
    2. K. Kitaura
    1. K. Morokuma,
    2. K. Kitaura
    , “Energy decomposition analysis of molecular interactions” in Chemical Applications of Atomic and Molecular Electrostatic Potentials, K. Morokuma, K. Kitaura, Eds. (Springer, 1981), pp. 215–242.
  79. ↵
    1. S. Grimme
    , Improved second-order Møller-Plesset perturbation theory by separate scaling of parallel-and antiparallel-spin pair correlation energies. J. Chem. Phys. 118, 9095–9102 (2003).
    OpenUrl
  80. ↵
    1. M. Feyereisen,
    2. G. Fitzgerald,
    3. A. Komornicki
    , Use of approximate integrals in ab initio theory. An application in MP2 energy calculations. Chem. Phys. Lett. 208, 359–363 (1993).
    OpenUrlCrossRef
  81. ↵
    1. F. Weigend
    , Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006).
    OpenUrlCrossRefPubMed
  82. ↵
    1. A. Schäfer,
    2. H. Horn,
    3. R. Ahlrichs
    , Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 97, 2571–2577 (1992).
    OpenUrlCrossRef
  83. ↵
    1. F. Neese
    , The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73–78 (2012).
    OpenUrl
  84. ↵
    1. C. Riplinger,
    2. F. Neese
    , An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 138, 034106 (2013).
    OpenUrl
  85. ↵
    1. C. Riplinger,
    2. P. Pinski,
    3. U. Becker,
    4. E. F. Valeev,
    5. F. Neese
    , Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. J. Chem. Phys. 144, 024109 (2016).
    OpenUrl

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

Subscribers, for more details, please visit our Subscriptions FAQ.

Please click here to log into the PNAS submission website.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Strong metal–metal Pauli repulsion leads to repulsive metallophilicity in closed-shell d8 and d10 organometallic complexes
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Strong metal–metal Pauli repulsion leads to repulsive metallophilicity in closed-shell d8 and d10 organometallic complexes
Qingyun Wan, Jun Yang, Wai-Pong To, Chi-Ming Che
Proceedings of the National Academy of Sciences Jan 2021, 118 (1) e2019265118; DOI: 10.1073/pnas.2019265118

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Strong metal–metal Pauli repulsion leads to repulsive metallophilicity in closed-shell d8 and d10 organometallic complexes
Qingyun Wan, Jun Yang, Wai-Pong To, Chi-Ming Che
Proceedings of the National Academy of Sciences Jan 2021, 118 (1) e2019265118; DOI: 10.1073/pnas.2019265118
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley

Article Classifications

  • Physical Sciences
  • Chemistry
Proceedings of the National Academy of Sciences: 118 (1)
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Results and Discussion
    • Conclusion
    • Materials and Methods
    • Data Availability.
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Water from a faucet fills a glass.
News Feature: How “forever chemicals” might impair the immune system
Researchers are exploring whether these ubiquitous fluorinated molecules might worsen infections or hamper vaccine effectiveness.
Image credit: Shutterstock/Dmitry Naumov.
Reflection of clouds in the still waters of Mono Lake in California.
Inner Workings: Making headway with the mysteries of life’s origins
Recent experiments and simulations are starting to answer some fundamental questions about how life came to be.
Image credit: Shutterstock/Radoslaw Lecyk.
Cave in coastal Kenya with tree growing in the middle.
Journal Club: Small, sharp blades mark shift from Middle to Later Stone Age in coastal Kenya
Archaeologists have long tried to define the transition between the two time periods.
Image credit: Ceri Shipton.
Mouse fibroblast cells. Electron bifurcation reactions keep mammalian cells alive.
Exploring electron bifurcation
Jonathon Yuly, David Beratan, and Peng Zhang investigate how electron bifurcation reactions work.
Listen
Past PodcastsSubscribe
Panda bear hanging in a tree
How horse manure helps giant pandas tolerate cold
A study finds that giant pandas roll in horse manure to increase their cold tolerance.
Image credit: Fuwen Wei.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Cozzarelli Prize
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490