Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

High-sensitivity heat-capacity measurements on Sr2RuO4 under uniaxial pressure

You-Sheng Li, Naoki Kikugawa, Dmitry A. Sokolov, View ORCID ProfileFabian Jerzembeck, View ORCID ProfileAlexandra S. Gibbs, View ORCID ProfileYoshiteru Maeno, View ORCID ProfileClifford W. Hicks, View ORCID ProfileJörg Schmalian, View ORCID ProfileMichael Nicklas, and View ORCID ProfileAndrew P. Mackenzie
  1. aMax Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany;
  2. bScottish Universities Physics Alliance, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom;
  3. cNational Institute for Materials Science, Tsukuba 305-0003, Japan;
  4. dISIS Facility, Science and Technology Facilities Council Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom;
  5. eDepartment of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
  6. fInstitut für Theorie der Kondensierten Materie, Karlsruher Institut für Technologie, 76131 Karlsruhe, Germany;
  7. gInstitut für Quantenmaterialien und Technologien, Karlsruher Institut für Technologie, 76131 Karlsruhe, Germany

See allHide authors and affiliations

PNAS March 9, 2021 118 (10) e2020492118; https://doi.org/10.1073/pnas.2020492118
You-Sheng Li
aMax Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany;
bScottish Universities Physics Alliance, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Naoki Kikugawa
cNational Institute for Materials Science, Tsukuba 305-0003, Japan;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dmitry A. Sokolov
aMax Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Fabian Jerzembeck
aMax Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Fabian Jerzembeck
Alexandra S. Gibbs
dISIS Facility, Science and Technology Facilities Council Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Alexandra S. Gibbs
Yoshiteru Maeno
eDepartment of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yoshiteru Maeno
Clifford W. Hicks
aMax Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Clifford W. Hicks
Jörg Schmalian
fInstitut für Theorie der Kondensierten Materie, Karlsruher Institut für Technologie, 76131 Karlsruhe, Germany;
gInstitut für Quantenmaterialien und Technologien, Karlsruher Institut für Technologie, 76131 Karlsruhe, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jörg Schmalian
Michael Nicklas
aMax Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Michael Nicklas
  • For correspondence: Michael.Nicklas@cpfs.mpg.de andy.mackenzie@cpfs.mpg.de
Andrew P. Mackenzie
aMax Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany;
bScottish Universities Physics Alliance, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Andrew P. Mackenzie
  • For correspondence: Michael.Nicklas@cpfs.mpg.de andy.mackenzie@cpfs.mpg.de
  1. Edited by Zachary Fisk, University of California, Irvine, CA, and approved January 13, 2021 (received for review September 30, 2020)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

Research on the unconventional superconductivity of Sr2RuO4 is undergoing a renaissance since recent spin susceptibility measurements ruling out the spin triplet order parameter which had been widely favored for over two decades. With ultrasound, Kerr rotation, and muon spin relaxation data all providing evidence for a two-component order parameter, it is vital that this possibility be investigated thermodynamically by studying the dependence of the heat-capacity anomaly on uniaxial pressure. Here, the relevant experimental results are combined with theoretical analysis that shows how strongly the data constrain theories of the order parameter. In particular, we do not observe any signs of transition splitting of two-order-parameter components. Sr2RuO4 thus offers a unique test bed for theories of unconventional superconductivity.

Abstract

A key question regarding the unconventional superconductivity of Sr2RuO4 remains whether the order parameter is single- or two-component. Under a hypothesis of two-component superconductivity, uniaxial pressure is expected to lift their degeneracy, resulting in a split transition. The most direct and fundamental probe of a split transition is heat capacity. Here, we report measurement of heat capacity of samples subject to large and highly homogeneous uniaxial pressure. We place an upper limit on the heat-capacity signature of any second transition of a few percent of that of the primary superconducting transition. The normalized jump in heat capacity, ΔC/C, grows smoothly as a function of uniaxial pressure, favoring order parameters which are allowed to maximize in the same part of the Brillouin zone as the well-studied van Hove singularity. Thanks to the high precision of our measurements, these findings place stringent constraints on theories of the superconductivity of Sr2RuO4.

  • superconductivity
  • heat capacity
  • uniaxial pressure

Footnotes

  • ↵1To whom correspondence may be addressed. Email: Michael.Nicklas{at}cpfs.mpg.de or andy.mackenzie{at}cpfs.mpg.de.
  • Author contributions: C.W.H., M.N., and A.P.M. designed research; Y.-S.L., N.K., D.A.S., F.J., A.S.G., Y.M., and C.W.H. performed research; Y.-S.L. and M.N. analyzed data; and J.S. and A.P.M. wrote the paper with contributions from the other authors.

  • The authors declare no competing interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020492118/-/DCSupplemental.

Data Availability

Heat-capacity data that underpin the findings of this study are available from the University of St Andrews research portal: https://doi.org/10.17630/b5ff3cfd-bb2d-46c9-a240-7a7064562588.

Published under the PNAS license.

View Full Text

References

  1. ↵
    1. Y. Maeno et al.
    , Superconductivity in a layered perovskite without copper. Nature 372, 532–534 (1994).
    OpenUrlCrossRef
  2. ↵
    1. A. P. Mackenzie,
    2. Y. Maeno
    , The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing. Rev. Mod. Phys. 75, 657–712 (2003).
    OpenUrlCrossRef
  3. ↵
    1. A. P. Mackenzie et al.
    , Extremely strong dependence of superconductivity on disorder in Sr2RuO4. Phys. Rev. Lett. 80, 161–164 (1998).
    OpenUrlCrossRef
  4. ↵
    1. A. P. Mackenzie et al.
    , Quantum oscillations in the layered perovskite superconductor Sr2RuO4. Phys. Rev. Lett. 76, 3786–3789 (1996).
    OpenUrlCrossRefPubMed
  5. ↵
    1. Y. Maeno et al.
    , Two-dimensional Fermi liquid behavior of the superconductor Sr2RuO4. J. Phys. Soc. Jpn. 66, 1405–1408 (1997).
    OpenUrl
  6. ↵
    1. C. Bergemann,
    2. S. R. Julian,
    3. A. P. Mackenzie,
    4. S. NishiZaki,
    5. Y. Maeno
    , Detailed topography of the Fermi surface of Sr2RuO4. Phys. Rev. Lett. 84, 2662–2665 (2000).
    OpenUrlCrossRefPubMed
  7. ↵
    1. C. Bergemann,
    2. A. P. Mackenzie,
    3. S. R. Julian,
    4. D. Forsythe,
    5. E. Ohmichi
    , Quasi-two-dimensional Fermi liquid properties of the unconventional superconductor Sr2RuO4. Adv. Phys. 52, 639–725 (2003).
    OpenUrlCrossRefPubMed
  8. ↵
    1. S. Raghu,
    2. A. Kapitulnik,
    3. S. A. Kivelson
    , Hidden quasi-one-dimensional superconductivity in Sr2RuO4. Phys. Rev. Lett. 105, 136401 (2010).
    OpenUrlCrossRefPubMed
  9. ↵
    1. T. Scaffidi,
    2. J. C. Romers,
    3. S. H. Simon
    , Pairing symmetry and dominant band in Sr2RuO4. Phys. Rev. B 89, 220510(R) (2014).
    OpenUrl
  10. ↵
    1. H. S. Røising,
    2. T. Scaffidi,
    3. F. Flicker,
    4. G. F. Lange,
    5. S. H. Simon
    , Superconducting order of Sr2RuO4 from a three-dimensional microscopic model. Phys. Rev. Res. 1, 033108 (2019).
    OpenUrl
  11. ↵
    1. A. P. Mackenzie,
    2. T. Scaffidi,
    3. C. W. Hicks,
    4. Maeno
    , Even odder after twenty-three years: The superconducting order parameter puzzle of Sr2RuO4. npj Quant. Mater. 2, 40 (2017).
    OpenUrl
  12. ↵
    1. Y. Maeno,
    2. S. Kittaka,
    3. T. Nomura,
    4. S. Yonezawa,
    5. K. Ishida
    , Evaluation of spin-triplet superconductivity in Sr2RuO4. J. Phys. Soc. Jpn. 81, 11009 (2012).
    OpenUrl
  13. ↵
    1. B. Burganov et al.
    , Strain control of fermiology and many-body interactions in two-dimensional ruthenates. Phys. Rev. Lett. 116, 197003 (2016).
    OpenUrlCrossRefPubMed
  14. ↵
    1. A. Pustogow et al.
    , Constraints on the superconducting order parameter in Sr2RuO4 from oxygen-17 nuclear magnetic resonance. Nature 574, 72–75 (2019).
    OpenUrl
  15. ↵
    1. K. Ishida,
    2. M. Manago,
    3. K. Kinjo,
    4. Y. Maeno
    , Reduction of the 17O Knight shift in the superconducting state and the heat-up effect by NMR pulses on Sr2RuO4. J. Phys. Soc. Jpn. 89, 034712 (2020).
    OpenUrl
  16. ↵
    1. A. Chronister et al.
    , Evidence for even parity unconventional superconductivity in Sr2RuO4. arXiv [Preprint] (2020). https://arxiv.org/abs/2007.13730 (Accessed 17 February 2021).
  17. ↵
    1. S. Benhabib et al.
    , Ultrasound evidence for a two-component superconducting order parameter in Sr2RuO4. Nat. Phys. 17, 194–198 (2021).
    OpenUrl
  18. ↵
    1. S. Ghosh et al.
    , Thermodynamic evidence for a two-component superconducting order parameter in Sr2RuO4. Nat. Phys. 17, 99–204 (2021).
    OpenUrl
  19. ↵
    1. G. M. Luke et al.
    , Time-reversal symmetry breaking superconductivity in Sr2RuO4. Nature 394, 558–561 (1998).
    OpenUrlCrossRef
  20. ↵
    1. G. M. Luke et al.
    , Unconventional superconductivity in Sr2RuO4. Physica B 289–290, 373–376 (2000).
    OpenUrl
  21. ↵
    1. J. Xia,
    2. Y. Maeno,
    3. P. T. Beyersdorf,
    4. M. M. Fejer,
    5. A. Kapitulnik
    , High resolution polar kerr effect measurements of Sr2RuO4: Evidence for broken time-reversal symmetry in the superconducting state. Phys. Rev. Lett. 97, 167002 (2006).
    OpenUrlCrossRefPubMed
  22. ↵
    1. M. Sigrist,
    2. K. Ueda
    , Phenomenological theory of unconventional superconductivity. Rev. Mod. Phys. 63, 239–311 (1991).
    OpenUrlCrossRef
  23. ↵
    1. V. Grinenko et al.
    , Split superconducting and time-reversal symmetry-breaking transitions in Sr2RuO4 under stress. Nat. Phys., doi:10.1038/s41567-021-01182-7 (2021).
    OpenUrlCrossRef
  24. ↵
    1. R. A. Fisher et al.
    , Specific heat of UPt3: Evidence for unconventional superconductivity. Phys. Rev. Lett. 62, 1411–1414 (1989).
    OpenUrlCrossRefPubMed
  25. ↵
    1. K. Hasselbach,
    2. L. Taillefer,
    3. J. Flouquet
    , Critical point in the superconducting phase diagram of UPt3. Phys. Rev. Lett. 63, 93–96 (1989).
    OpenUrlCrossRefPubMed
  26. ↵
    1. Y. S. Li,
    2. R. Borth,
    3. C. W. Hicks,
    4. A. P. Mackenzie,
    5. M. Nicklas
    , Heat-capacity measurements under large uniaxial pressure using a piezo-driven device. Rev. Sci. Inst. 91, 103903 (2020).
    OpenUrl
  27. ↵
    1. C. W. Hicks et al.
    , Strong increase of Tc of Sr2RuO4 under both tensile and compressive strain. Science 344, 283–285 (2014).
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. A. Steppke et al.
    , Strong peak in Tc of Sr2RuO4 under uniaxial pressure. Science 355, eaaf9398 (2017).
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. Y. T. Hsu et al.
    , Manipulating superconductivity in ruthenates through Fermi surface engineering. Phys. Rev. B 94, 045118 (2016).
    OpenUrl
  30. ↵
    1. M. E. Barber et al.
    , Role of correlations in determining the van Hove strain in Sr2RuO4. Phys. Rev. B 100, 245139 (2019).
    OpenUrl
  31. ↵
    1. V. Sunko et al.
    , Direct observation of a uniaxial stress-driven Lifshitz transition in Sr2RuO4. npj Quant. Mat. 4, 2397–4648 (2019).
    OpenUrl
  32. ↵
    1. I. Žutić,
    2. I. Mazin
    , Phase-sensitive tests of the pairing state symmetry in Sr2RuO4. Phys. Rev. Lett. 95, 217004 (2005).
    OpenUrlCrossRefPubMed
  33. ↵
    1. H. G. Suh et al.
    , Stabilizing even-parity chiral superconductivity in Sr2RuO4. Phys. Rev. Res. 2, 032023(R) (2020).
    OpenUrl
  34. ↵
    1. S. A. Kivelson,
    2. A. C. Yuan,
    3. B. J. Ramshaw,
    4. R. Thomale
    , A proposal for reconciling diverse experiments on the superconducting state in Sr2RuO4. npj Quant. Mater. 5, 43 (2020).
    OpenUrl
  35. ↵
    1. A. T. Rømer,
    2. D. D. Scherer,
    3. I. M. Eremin,
    4. P. J. Hirschfeld,
    5. B. M. Andersen
    , Knight shift and leading superconducting instability from spin fluctuations in Sr2RuO4. Phys. Rev. Lett. 123, 247001 (2019).
    OpenUrl
  36. ↵
    1. T. Scaffidi
    , Degeneracy between even- and odd-parity superconductivity in the quasi-1D Hubbard model and implications for Sr2RuO4. arXiv [Preprint] (2020). https://arxiv.org/abs/2007.13769 (Accessed 17 February 2021).
  37. ↵
    1. K. Matano,
    2. M. Kriener,
    3. K. Segawa,
    4. Y. Ando,
    5. G. Zheng
    , Spin-rotation symmetry breaking in the superconducting state of CuxBi2Se3. Nat. Phys. 12, 852–854 (2016).
    OpenUrl
  38. ↵
    1. S. Yonezawa et al.
    , Thermodynamic evidence for nematic superconductivity in CuxBi2Se3. Nat. Phys. 13, 123–126 (2017).
    OpenUrl
  39. ↵
    1. C. Cho et al.
    , .Z3-vestigial nematic order due to superconducting fluctuations in the doped topological insulators NbxBi2Se3 and CuxBi2Se3. Nat. Commun. 11, 3056 (2020).
    OpenUrl
  40. ↵
    1. R. Willa,
    2. M. Hecker,
    3. R. M. Fernandes,
    4. J. Schmalian
    , Inhomogeneous time-reversal symmetry breaking in Sr2RuO4. arXiv [Preprint] (2020). https://arxiv.org/abs/2011.01941 (Accessed 17 February 2021).
  41. ↵
    1. J. S. Bobowski et al.
    , Improved single-crystal growth of Sr2RuO4. Condens. Matter 4, 6 (2019).
    OpenUrl

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

Subscribers, for more details, please visit our Subscriptions FAQ.

Please click here to log into the PNAS submission website.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
High-sensitivity heat-capacity measurements on Sr2RuO4 under uniaxial pressure
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
High-sensitivity heat-capacity measurements on Sr2RuO4 under uniaxial pressure
You-Sheng Li, Naoki Kikugawa, Dmitry A. Sokolov, Fabian Jerzembeck, Alexandra S. Gibbs, Yoshiteru Maeno, Clifford W. Hicks, Jörg Schmalian, Michael Nicklas, Andrew P. Mackenzie
Proceedings of the National Academy of Sciences Mar 2021, 118 (10) e2020492118; DOI: 10.1073/pnas.2020492118

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
High-sensitivity heat-capacity measurements on Sr2RuO4 under uniaxial pressure
You-Sheng Li, Naoki Kikugawa, Dmitry A. Sokolov, Fabian Jerzembeck, Alexandra S. Gibbs, Yoshiteru Maeno, Clifford W. Hicks, Jörg Schmalian, Michael Nicklas, Andrew P. Mackenzie
Proceedings of the National Academy of Sciences Mar 2021, 118 (10) e2020492118; DOI: 10.1073/pnas.2020492118
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley

Article Classifications

  • Physical Sciences
  • Physics
Proceedings of the National Academy of Sciences: 118 (10)
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Experiment
    • Results
    • Discussion
    • Conclusion
    • Materials and Methods
    • Data Availability
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Water from a faucet fills a glass.
News Feature: How “forever chemicals” might impair the immune system
Researchers are exploring whether these ubiquitous fluorinated molecules might worsen infections or hamper vaccine effectiveness.
Image credit: Shutterstock/Dmitry Naumov.
Reflection of clouds in the still waters of Mono Lake in California.
Inner Workings: Making headway with the mysteries of life’s origins
Recent experiments and simulations are starting to answer some fundamental questions about how life came to be.
Image credit: Shutterstock/Radoslaw Lecyk.
Cave in coastal Kenya with tree growing in the middle.
Journal Club: Small, sharp blades mark shift from Middle to Later Stone Age in coastal Kenya
Archaeologists have long tried to define the transition between the two time periods.
Image credit: Ceri Shipton.
Mouse fibroblast cells. Electron bifurcation reactions keep mammalian cells alive.
Exploring electron bifurcation
Jonathon Yuly, David Beratan, and Peng Zhang investigate how electron bifurcation reactions work.
Listen
Past PodcastsSubscribe
Panda bear hanging in a tree
How horse manure helps giant pandas tolerate cold
A study finds that giant pandas roll in horse manure to increase their cold tolerance.
Image credit: Fuwen Wei.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Cozzarelli Prize
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490