Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Elastic amplification of the Rayleigh–Taylor instability in solidifying melts

Etienne Jambon-Puillet, Matthieu Royer Piéchaud, and View ORCID ProfileP.-T. Brun
PNAS March 9, 2021 118 (10) e2020701118; https://doi.org/10.1073/pnas.2020701118
Etienne Jambon-Puillet
aDepartment of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Matthieu Royer Piéchaud
aDepartment of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P.-T. Brun
aDepartment of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P.-T. Brun
  • For correspondence: pbrun@princeton.edu
  1. Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved January 19, 2021 (received for review October 2, 2020)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

Patterns resulting from successive far-from-equilibrium processes are common in nature. Yet, they are challenging to investigate, model, and translate to engineering owing to their complexity coupled to fluctuating developmental conditions. Here we introduce a comparatively simpler system combining a fluidic instability and large solid deformations in solidifying melts to produce soft solids with complex surface geometry. We fully rationalize this different kind of pattern comprising elongated hair-like features using the framework of continuum mechanics. Our work is relevant to the broad range of problems where mechanical deformations and solidification are concomitant and paves the way for the use of multistep moldless approaches for the assembly of complex materials.

Abstract

The concomitant mechanical deformation and solidification of melts are relevant to a broad range of phenomena. Examples include the preparation of cotton candy, the atomization of metals, the manufacture of glass fibers, and the formation of elongated structures in volcanic eruptions known as Pele’s hair. Usually, solid-like deformations during solidification are neglected as the melt is much more malleable in its initial liquid-like form. Here we demonstrate how elastic deformations in the midst of solidification, i.e., while the melt responds as a very soft solid (G∼100 Pa), can lead to the formation of previously unknown periodic structures. Namely, we generate an array of droplets on a thin layer of liquid elastomer melt coated on the outside of a rotating cylinder through the Rayleigh–Taylor instability. Then, as the melt cures and goes through its gelation point, the rotation speed is increased and the drops stretch into hairs. The ongoing solidification eventually hardens the material, permanently “freezing” these elastic deformations into a patterned solid. Using experiments, simulation, and theory, we demonstrate that the formation of our two-step patterns can be rationalized when combining the tools from fluid mechanics, elasticity, and statistics. Our study therefore provides a framework to analyze multistep pattern formation processes and harness them to assemble complex materials.

  • pattern formation
  • fluid–elastic coupling
  • solidification
  • soft materials

Footnotes

  • ↵1To whom correspondence may be addressed. Email: pbrun{at}princeton.edu.
  • Author contributions: P.-T.B. designed the research; E.J.-P. and M.R.-P. performed the experiments; E.J.-P. performed the simulations; E.J.-P. derived the model; and E.J.-P. and P.-T.B. wrote the paper.

  • The authors declare no competing interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020701118/-/DCSupplemental.

Data Availability

All study data are included in this article and/or SI Appendix.

Published under the PNAS license.

View Full Text

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

Subscribers, for more details, please visit our Subscriptions FAQ.

Please click here to log into the PNAS submission website.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Elastic amplification of the Rayleigh–Taylor instability in solidifying melts
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Elastic amplification of the Rayleigh–Taylor instability in solidifying melts
Etienne Jambon-Puillet, Matthieu Royer Piéchaud, P.-T. Brun
Proceedings of the National Academy of Sciences Mar 2021, 118 (10) e2020701118; DOI: 10.1073/pnas.2020701118

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Elastic amplification of the Rayleigh–Taylor instability in solidifying melts
Etienne Jambon-Puillet, Matthieu Royer Piéchaud, P.-T. Brun
Proceedings of the National Academy of Sciences Mar 2021, 118 (10) e2020701118; DOI: 10.1073/pnas.2020701118
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 118 (10)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Physical Sciences
  • Engineering

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Data Availability
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Surgeons hands during surgery
Inner Workings: Advances in infectious disease treatment promise to expand the pool of donor organs
Despite myriad challenges, clinicians see room for progress.
Image credit: Shutterstock/David Tadevosian.
Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Double helix
Journal Club: Noncoding DNA shown to underlie function, cause limb malformations
Using CRISPR, researchers showed that a region some used to label “junk DNA” has a major role in a rare genetic disorder.
Image credit: Nathan Devery.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Birds nestling on tree branches
Parent–offspring conflict in songbird fledging
Some songbird parents might improve their own fitness by manipulating their offspring into leaving the nest early, at the cost of fledgling survival, a study finds.
Image credit: Gil Eckrich (photographer).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490