Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

Primate phageomes are structured by superhost phylogeny and environment

View ORCID ProfileJan F. Gogarten, View ORCID ProfileMalte Rühlemann, Elizabeth Archie, View ORCID ProfileJenny Tung, View ORCID ProfileChantal Akoua-Koffi, View ORCID ProfileCorinna Bang, Tobias Deschner, Jean-Jacques Muyembe-Tamfun, Martha M. Robbins, Grit Schubert, View ORCID ProfileMartin Surbeck, Roman M. Wittig, View ORCID ProfileKlaus Zuberbühler, John F. Baines, View ORCID ProfileAndre Franke, View ORCID ProfileFabian H. Leendertz, and View ORCID ProfileSébastien Calvignac-Spencer
  1. aEpidemiology of Highly Pathogenic Organisms, Robert Koch Institute, 13353 Berlin, Germany;
  2. bViral Evolution, Robert Koch Institute, 13353 Berlin, Germany;
  3. cInstitute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, 24105 Kiel, Germany;
  4. dDepartment of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556;
  5. eDepartment of Biology, Duke University, Durham, NC 27708;
  6. fDuke University Population Research Institute, Duke University, Durham, NC 27708;
  7. gDepartment of Evolutionary Anthropology, Duke University, Durham, NC 27708;
  8. hUnité de Formation et Recherche des Sciences Médicales, Université Alassane Ouattara de Bouake, BP V1801 Bouaké, Côte d’Ivoire;
  9. iMax Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany;
  10. jNational Institute for Biomedical Research, National Laboratory of Public Health, BP 1197 Kinshasa, Democratic Republic of the Congo;
  11. kDepartment of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138;
  12. lTai Chimpanzee Project, Centre Suisse de Recherches Scientifiques, BP 1301, Abidjan 01, Cote d’Ivoire;
  13. mInstitute of Biology, University of Neuchatel, CH-2000 Neuchatel, Switzerland;
  14. nMax Planck Institute for Evolutionary Biology, 24306 Plön, Germany;
  15. oInstitute for Experimental Medicine, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany

See allHide authors and affiliations

PNAS April 13, 2021 118 (15) e2013535118; https://doi.org/10.1073/pnas.2013535118
Jan F. Gogarten
aEpidemiology of Highly Pathogenic Organisms, Robert Koch Institute, 13353 Berlin, Germany;
bViral Evolution, Robert Koch Institute, 13353 Berlin, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jan F. Gogarten
  • For correspondence: jan.gogarten@gmail.com calvignacs@rki.de
Malte Rühlemann
cInstitute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, 24105 Kiel, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Malte Rühlemann
Elizabeth Archie
dDepartment of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jenny Tung
eDepartment of Biology, Duke University, Durham, NC 27708;
fDuke University Population Research Institute, Duke University, Durham, NC 27708;
gDepartment of Evolutionary Anthropology, Duke University, Durham, NC 27708;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jenny Tung
Chantal Akoua-Koffi
hUnité de Formation et Recherche des Sciences Médicales, Université Alassane Ouattara de Bouake, BP V1801 Bouaké, Côte d’Ivoire;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Chantal Akoua-Koffi
Corinna Bang
cInstitute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, 24105 Kiel, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Corinna Bang
Tobias Deschner
iMax Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jean-Jacques Muyembe-Tamfun
jNational Institute for Biomedical Research, National Laboratory of Public Health, BP 1197 Kinshasa, Democratic Republic of the Congo;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Martha M. Robbins
iMax Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Grit Schubert
aEpidemiology of Highly Pathogenic Organisms, Robert Koch Institute, 13353 Berlin, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Martin Surbeck
iMax Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany;
kDepartment of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Martin Surbeck
Roman M. Wittig
iMax Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany;
lTai Chimpanzee Project, Centre Suisse de Recherches Scientifiques, BP 1301, Abidjan 01, Cote d’Ivoire;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Klaus Zuberbühler
mInstitute of Biology, University of Neuchatel, CH-2000 Neuchatel, Switzerland;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Klaus Zuberbühler
John F. Baines
nMax Planck Institute for Evolutionary Biology, 24306 Plön, Germany;
oInstitute for Experimental Medicine, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andre Franke
cInstitute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, 24105 Kiel, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Andre Franke
Fabian H. Leendertz
aEpidemiology of Highly Pathogenic Organisms, Robert Koch Institute, 13353 Berlin, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Fabian H. Leendertz
Sébastien Calvignac-Spencer
aEpidemiology of Highly Pathogenic Organisms, Robert Koch Institute, 13353 Berlin, Germany;
bViral Evolution, Robert Koch Institute, 13353 Berlin, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sébastien Calvignac-Spencer
  • For correspondence: jan.gogarten@gmail.com calvignacs@rki.de
  1. Edited by James J. Bull, University of Idaho, Moscow, ID, and approved February 24, 2021 (received for review July 1, 2020)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

Mammals harbor diverse communities of gut microbes. The assembly and evolution of the bacterial components of these communities are influenced by host evolutionary histories and social behavior. Little is known about the ecological and evolutionary origins of the phages infecting these bacteria. We explore drivers of phage community assembly and phage lineage evolution in primates. Many phages codiverged with their superhosts. Furthermore, neighboring social groups harbor compositionally and evolutionary distinct phageomes, structured by superhost social behavior. Captive primate phageome composition is intermediate to humans and their wild primate counterparts, with phage phylogenies revealing replacement of wild-associated phages by human-associated lineages. This plasticity makes the long-term associations of phages with their superhosts observed across ecosystems and continents all the more striking.

Abstract

Humans harbor diverse communities of microorganisms, the majority of which are bacteria in the gastrointestinal tract. These gut bacterial communities in turn host diverse bacteriophage (hereafter phage) communities that have a major impact on their structure, function, and, ultimately, human health. However, the evolutionary and ecological origins of these human-associated phage communities are poorly understood. To address this question, we examined fecal phageomes of 23 wild nonhuman primate taxa, including multiple representatives of all the major primate radiations. We find relatives of the majority of human-associated phages in wild primates. Primate taxa have distinct phageome compositions that exhibit a clear phylosymbiotic signal, and phage–superhost codivergence is often detected for individual phages. Within species, neighboring social groups harbor compositionally and evolutionarily distinct phageomes, which are structured by superhost social behavior. Captive nonhuman primate phageome composition is intermediate between that of their wild counterparts and humans. Phage phylogenies reveal replacement of wild great ape–associated phages with human-associated ones in captivity and, surprisingly, show no signal for the persistence of wild-associated phages in captivity. Together, our results suggest that potentially labile primate-phage associations have persisted across millions of years of evolution. Across primates, these phylosymbiotic and sometimes codiverging phage communities are shaped by transmission between groupmates through grooming and are dramatically modified when primates are moved into captivity.

  • bacteriophages
  • codivergence
  • phylosymbiosis
  • zoonotic transmission
  • fecal virome

Footnotes

  • ↵1To whom correspondence may be addressed. Email: jan.gogarten{at}gmail.com or calvignacs{at}rki.de.
  • Author contributions: J.F.G., J.F.B., A.F., F.H.L., and S.C.-S. designed research; J.F.G., M.R., E.A., J.T., C.A.-K., C.B., T.D., J.-J.M.-T., M.M.R., G.S., M.S., R.M.W., K.Z., F.H.L., and S.C.-S. performed research; J.F.G. and M.R. analyzed data; and J.F.G., M.R., E.A., J.T., C.A.-K., C.B., T.D., J.-J.M.-T., M.M.R., G.S., M.S., R.M.W., K.Z., J.F.B., A.F., F.H.L., and S.C.-S. wrote the paper.

  • The authors declare no competing interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013535118/-/DCSupplemental.

Data Availability

The data supporting the conclusions of this article are available in the supporting information, with the exception of the larger files that are available through the Zenodo open-access repository (https://zenodo.org/record/4641870). Code for quality control and assembly of contigs is available here: https://github.com/mruehlemann/metagenome_preproc/blob/master/qc_and_assemble.slurm. All sequences generated as part of this study have been uploaded to the project accession number PRJNA692042. Data from previously published work are available through project accession number PRJNA271618 and ERP104379.

Published under the PNAS license.

View Full Text

References

  1. ↵
    1. M. K. Mirzaei,
    2. C. F. Maurice
    , Ménage à trois in the human gut: Interactions between host, bacteria and phages. Nat. Rev. Microbiol. 15, 397–408 (2017).
    OpenUrlCrossRef
  2. ↵
    1. J. J. Barr et al
    ., Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc. Natl. Acad. Sci. U.S.A. 110, 10771–10776 (2013).
    OpenUrlAbstract/FREE Full Text
  3. ↵
    1. Y. Ma,
    2. X. You,
    3. G. Mai,
    4. T. Tokuyasu,
    5. C. Liu
    , A human gut phage catalog correlates the gut phageome with type 2 diabetes. Microbiome 6, 24 (2018).
    OpenUrlCrossRef
  4. ↵
    1. L. Gogokhia et al
    ., Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 25, 285–299.e8 (2019).
    OpenUrlCrossRef
  5. ↵
    1. M. K. Mirzaei et al
    ., Bacteriophages isolated from stunted children can regulate gut bacterial communities in an age-specific manner. Cell Host Microbe 27, 199–212.e5 (2020).
    OpenUrlCrossRef
  6. ↵
    1. S. J. Ott et al
    ., Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterology 152, 799–811.e7 (2017).
    OpenUrlCrossRefPubMed
  7. ↵
    1. R. A. Edwards et al
    ., Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nat. Microbiol. 4, 1727–1736 (2019).
    OpenUrl
  8. ↵
    1. M. Groussin et al
    ., Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat. Commun. 8, 14319 (2017).
    OpenUrlCrossRefPubMed
  9. ↵
    1. A. H. Moeller et al
    ., Cospeciation of gut microbiota with hominids. Science 353, 380–382 (2016).
    OpenUrlAbstract/FREE Full Text
  10. ↵
    1. H. Ochman et al
    ., Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol. 8, e1000546 (2010).
    OpenUrlCrossRefPubMed
  11. ↵
    1. C. P. van Schaik,
    2. P. M. Kappeler
    , Infanticide risk and the evolution of male-female association in primates. Proc. Biol. Sci. 264, 1687–1694 (1997).
    OpenUrlCrossRefPubMed
  12. ↵
    1. J. Tung et al
    ., Social networks predict gut microbiome composition in wild baboons. elife 4, e05224 (2015).
    OpenUrl
  13. ↵
    1. J. F. Gogarten et al
    ., Factors influencing bacterial microbiome composition in a wild non-human primate community in Taï National Park, Côte d’Ivoire. ISME J. 12, 2559–2574 (2018).
    OpenUrlCrossRef
  14. ↵
    1. J. B. Clayton et al
    ., Captivity humanizes the primate microbiome. Proc. Natl. Acad. Sci. U.S.A. 113, 10376–10381 (2016).
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. J. S. Frankel,
    2. E. K. Mallott,
    3. L. M. Hopper,
    4. S. R. Ross,
    5. K. R. Amato
    , The effect of captivity on the primate gut microbiome varies with host dietary niche. Am. J. Primatol. 81, e23061 (2019).
    OpenUrl
  16. ↵
    1. P. Manrique et al
    ., Healthy human gut phageome. Proc. Natl. Acad. Sci. U.S.A. 113, 10400–10405 (2016).
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. S. F. Altschul,
    2. W. Gish,
    3. W. Miller,
    4. E. W. Myers,
    5. D. J. Lipman
    , Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
    OpenUrlCrossRefPubMed
  18. ↵
    1. P. Legendre,
    2. Y. Desdevises,
    3. E. Bazin
    , A statistical test for host-parasite coevolution. Syst. Biol. 51, 217–234 (2002).
    OpenUrlCrossRefPubMed
  19. ↵
    1. E. Harrison,
    2. M. A. Brockhurst
    , Ecological and evolutionary benefits of temperate phage: What does or doesn’t kill you makes you stronger. BioEssays 39, 1700112 (2017).
    OpenUrl
  20. ↵
    1. A. J. Hockenberry,
    2. C. O. Wilke
    , BACPHLIP: Predicting bacteriophage lifestyle from conserved protein domains. bioRxiv [Preprint] (2020). doi:10.1101/2020.05.13.094805. Accessed 21 November 2020.
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. L. J. Funkhouser,
    2. S. R. Bordenstein
    , Mom knows best: The universality of maternal microbial transmission. PLoS Biol. 11, e1001631 (2013).
    OpenUrlCrossRefPubMed
  22. ↵
    1. E. K. Costello,
    2. K. Stagaman,
    3. L. Dethlefsen,
    4. B. J. Bohannan,
    5. D. A. Relman
    , The application of ecological theory toward an understanding of the human microbiome. Science 336, 1255–1262 (2012).
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. A. C. Gregory et al
    ., The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe 28, 724–740.e8 (2020).
    OpenUrl
  24. ↵
    1. S. Roux,
    2. F. Enault,
    3. B. L. Hurwitz,
    4. M. B. Sullivan
    , VirSorter: Mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).
    OpenUrlCrossRefPubMed
  25. ↵
    1. D. Amgarten,
    2. L. P. P. Braga,
    3. A. M. da Silva,
    4. J. C. Setubal
    , MARVEL, a tool for prediction of bacteriophage sequences in metagenomic bins. Front. Genet. 9, 304 (2018).
    OpenUrl
  26. ↵
    1. J. Ren et al
    ., Identifying viruses from metagenomic data using deep learning. Quant. Biol. 8, 64–77, https://doi.org/10.1007/s40484-019-0187-4 (2020).
    OpenUrl
  27. ↵
    1. A. N. Shkoporov et al
    ., The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 26, 527–541.e5 (2019).
    OpenUrlCrossRef
  28. ↵
    1. A. H. Moeller
    , The shrinking human gut microbiome. Curr. Opin. Microbiol. 38, 30–35 (2017).
    OpenUrl
  29. ↵
    1. E. C. Keen,
    2. G. Dantas
    , Close encounters of three kinds: Bacteriophages, commensal bacteria, and host immunity. Trends Microbiol. 26, 943–954 (2018).
    OpenUrlCrossRefPubMed
  30. ↵
    1. K. R. Amato et al
    ., Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 13, 576–587 (2019).
    OpenUrl
  31. ↵
    1. G. Csardi,
    2. T. Nepusz
    , The igraph software package for complex network research. InterJournal. Complex Syst. 1695, 1–9 (2006).
    OpenUrl
  32. ↵
    1. A. Barrat,
    2. M. Barthélemy,
    3. R. Pastor-Satorras,
    4. A. Vespignani
    , The architecture of complex weighted networks. Proc. Natl. Acad. Sci. U.S.A. 101, 3747–3752 (2004).
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. C. Arnold,
    2. L. J. Matthews,
    3. C. L. Nunn
    , The 10kTrees website: A new online resource for primate phylogeny. Evol. Anthropol. 19, 114–118 (2010).
    OpenUrlCrossRef
  34. ↵
    1. A. L. Morales-Jimenez,
    2. T. Disotell,
    3. A. Di Fiore
    , Revisiting the phylogenetic relationships, biogeography, and taxonomy of spider monkeys (genus Ateles) in light of new molecular data. Mol. Phylogenet. Evol. 82, 467–483 (2015).
    OpenUrl
  35. ↵
    1. J. Wang et al
    ., Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat. Genet. 48, 1396–1406 (2016).
    OpenUrlCrossRefPubMed
  36. ↵
    1. B. Bushnell
    , BBMap. https://sourceforge.net/projects/bbmap/. Accessed 24 May 2020.
  37. ↵
    1. B. Bushnell,
    2. J. Rood,
    3. E. Singer
    , BBMerge–Accurate paired shotgun read merging via overlap. PLoS One 12, e0185056 (2017).
    OpenUrlCrossRefPubMed
  38. ↵
    1. S. Nurk,
    2. D. Meleshko,
    3. A. Korobeynikov,
    4. P. A. Pevzner
    , metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834, doi:10.1101/gr.213959.116 (2017).
    OpenUrlAbstract/FREE Full Text
  39. ↵
    1. M. Dowle,
    2. A. Srinivasan
    , Package ‘Data. Table’: Extension of ‘Data. Frame (Version 1.12.6, R package, 2019). https://CRAN.R-project.org/package=data.table. Accessed 21 November 2020.
  40. ↵
    1. J. Oksanen et al
    ., vegan: Community Ecology Package (Version 2.5-6, R package, 2019). https://CRAN.R-project.org/package=vegan. Accessed 21 November 2020.
  41. ↵
    1. H. Wickham
    , Ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
  42. ↵
    1. B. Auguie
    , GridExtra: Miscellaneous Functions for “Grid” Graphics (Version 2.3, R package, 2016). https://cran.r-project.org/web/packages/gridExtra. Accessed 21 November 2020.
  43. ↵
    1. M. Gottschling et al
    ., Quantifying the phylodynamic forces driving papillomavirus evolution. Mol. Biol. Evol. 28, 2101–2113 (2011).
    OpenUrlCrossRefPubMed
  44. ↵
    1. R Core Team
    , R: A Language and Environment for Statistical Computing, version 3.6.1. R Foundation for Statistical Computing, Vienna, Austria, 2019. https://www.R-project.org/. Accessed 21 November 2020.
  45. ↵
    1. Broad Institute
    , Picard. http://broadinstitute.github.io/picard. Accessed 24 March 2020.
  46. ↵
    1. H. Li et al.; 1000 Genome Project Data Processing Subgroup
    , The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
    OpenUrlCrossRefPubMed
  47. ↵
    1. S. Guindon et al
    ., New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
    OpenUrlCrossRefPubMed
  48. ↵
    1. B. Q. Minh,
    2. M. A. T. Nguyen,
    3. A. von Haeseler
    , Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).
    OpenUrlCrossRefPubMed
  49. ↵
    1. E. Paradis,
    2. K. Schliep
    , Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
    OpenUrlCrossRefPubMed
  50. ↵
    1. G. Yu,
    2. D. K. Smith,
    3. H. Zhu,
    4. Y. Guan,
    5. T. T. Y. Lam
    , ggtree: An R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).
    OpenUrlCrossRef
  51. ↵
    1. L. J. Revell
    , phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    OpenUrlCrossRefPubMed
  52. ↵
    1. B. J. Callahan et al
    ., DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
    OpenUrlCrossRefPubMed
  53. ↵
    1. K. Slowikowski
    , Ggrepel: Automatically Position Non-Overlapping Text Labels with ‘ggplot2’ (Version 0.8.2, R package, 2020). https://CRAN.R-project.org/package=ggrepel. Accessed 21 November 2020.
  54. ↵
    1. A. South
    , rnaturalearth: World Map Data from Natural Earth (Version 0.1.0, R package, 2017). https://CRAN.R-project.org/package=rnaturalearth. Accessed 21 November 2020.
  55. ↵
    1. E. Pebesma
    , Simple features for R: Standardized support for spatial vector data. R J. 10, 439–446 (2018).
    OpenUrl

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

Subscribers, for more details, please visit our Subscriptions FAQ.

Please click here to log into the PNAS submission website.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Primate phageomes are structured by superhost phylogeny and environment
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Primate phageomes are structured by superhost phylogeny and environment
Jan F. Gogarten, Malte Rühlemann, Elizabeth Archie, Jenny Tung, Chantal Akoua-Koffi, Corinna Bang, Tobias Deschner, Jean-Jacques Muyembe-Tamfun, Martha M. Robbins, Grit Schubert, Martin Surbeck, Roman M. Wittig, Klaus Zuberbühler, John F. Baines, Andre Franke, Fabian H. Leendertz, Sébastien Calvignac-Spencer
Proceedings of the National Academy of Sciences Apr 2021, 118 (15) e2013535118; DOI: 10.1073/pnas.2013535118

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Primate phageomes are structured by superhost phylogeny and environment
Jan F. Gogarten, Malte Rühlemann, Elizabeth Archie, Jenny Tung, Chantal Akoua-Koffi, Corinna Bang, Tobias Deschner, Jean-Jacques Muyembe-Tamfun, Martha M. Robbins, Grit Schubert, Martin Surbeck, Roman M. Wittig, Klaus Zuberbühler, John F. Baines, Andre Franke, Fabian H. Leendertz, Sébastien Calvignac-Spencer
Proceedings of the National Academy of Sciences Apr 2021, 118 (15) e2013535118; DOI: 10.1073/pnas.2013535118
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley

Article Classifications

  • Biological Sciences
  • Evolution
Proceedings of the National Academy of Sciences: 118 (15)
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Materials and Methods
    • Data Availability
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Water from a faucet fills a glass.
News Feature: How “forever chemicals” might impair the immune system
Researchers are exploring whether these ubiquitous fluorinated molecules might worsen infections or hamper vaccine effectiveness.
Image credit: Shutterstock/Dmitry Naumov.
Reflection of clouds in the still waters of Mono Lake in California.
Inner Workings: Making headway with the mysteries of life’s origins
Recent experiments and simulations are starting to answer some fundamental questions about how life came to be.
Image credit: Shutterstock/Radoslaw Lecyk.
Cave in coastal Kenya with tree growing in the middle.
Journal Club: Small, sharp blades mark shift from Middle to Later Stone Age in coastal Kenya
Archaeologists have long tried to define the transition between the two time periods.
Image credit: Ceri Shipton.
Mouse fibroblast cells. Electron bifurcation reactions keep mammalian cells alive.
Exploring electron bifurcation
Jonathon Yuly, David Beratan, and Peng Zhang investigate how electron bifurcation reactions work.
Listen
Past PodcastsSubscribe
Panda bear hanging in a tree
How horse manure helps giant pandas tolerate cold
A study finds that giant pandas roll in horse manure to increase their cold tolerance.
Image credit: Fuwen Wei.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Cozzarelli Prize
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490