Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

Creating self-assembled arrays of mono-oxo (MoO3)1 species on TiO2(101) via deposition and decomposition of (MoO3)n oligomers

Nassar Doudin, View ORCID ProfileGreg Collinge, Pradeep Kumar Gurunathan, View ORCID ProfileMal-Soon Lee, Vassiliki-Alexandra Glezakou, Roger Rousseau, and Zdenek Dohnálek
  1. aPhysical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354;
  2. bInstitute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA 99354;
  3. cVoiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99163

See allHide authors and affiliations

PNAS January 26, 2021 118 (4) e2017703118; https://doi.org/10.1073/pnas.2017703118
Nassar Doudin
aPhysical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354;
bInstitute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA 99354;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Greg Collinge
aPhysical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354;
bInstitute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA 99354;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Greg Collinge
Pradeep Kumar Gurunathan
aPhysical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354;
bInstitute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA 99354;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mal-Soon Lee
aPhysical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354;
bInstitute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA 99354;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Mal-Soon Lee
Vassiliki-Alexandra Glezakou
aPhysical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354;
bInstitute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA 99354;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roger Rousseau
aPhysical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354;
bInstitute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA 99354;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: roger.rousseau@pnnl.gov zdenek.dohnalek@pnnl.gov
Zdenek Dohnálek
aPhysical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354;
bInstitute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA 99354;
cVoiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99163
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: roger.rousseau@pnnl.gov zdenek.dohnalek@pnnl.gov
  1. Edited by Alexis T. Bell, University of California, Berkeley, CA, and approved November 2, 2020 (received for review August 26, 2020)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

The design and synthesis of hierarchically ordered oxides remains a critical challenge in material science and catalysis. Here, we demonstrate that well-ordered homotopic arrays of mono-oxo (MoO3)1 can be easily prepared on anatase TiO2(101) via the deposition of (MoO3)n oligomers. As revealed by our combined experiential and theoretical studies, the oligomers spontaneously decompose and self-assemble into chemically identical and thermally stable monomers. The oligomer decomposition is permitted at room temperature due to the dynamic coupling of decomposition steps to the lattice phonons of TiO2. We identify transient mobility of the oligomers as key to the self-assembly of the complete overlayer. The ease of preparation and thermal stability of this atomically precise system makes it highly suitable for a broad range of applications.

Abstract

Hierarchically ordered oxides are of critical importance in material science and catalysis. Unfortunately, the design and synthesis of such systems remains a key challenge to realizing their potential. In this study, we demonstrate how the deposition of small oligomeric (MoO3)1–6 clusters—formed by the facile sublimation of MoO3 powders—leads to the self-assembly of locally ordered arrays of immobilized mono-oxo (MoO3)1 species on anatase TiO2(101). Using both high-resolution imaging and theoretical calculations, we reveal the dynamic behavior of the oligomers as they spontaneously decompose at room temperature, with the TiO2 surface acting as a template for the growth of this hierarchically structured oxide. Transient mobility of the oligomers on both bare and (MoO3)1-covered TiO2(101) areas is identified as key to the formation of a complete (MoO3)1 overlayer with a saturation coverage of one (MoO3)1 per two undercoordinated surface Ti sites. Simulations reveal a dynamic coupling of the reaction steps to the TiO2 lattice fluctuations, the absence of which kinetically prevents decomposition. Further experimental and theoretical characterizations demonstrate that (MoO3)1 within this material are thermally stable up to 500 K and remain chemically identical with a single empty gap state produced within the TiO2 band structure. Finally, we see that the constituent (MoO3)1 of this material show no proclivity for step and defect sites, suggesting they can reliably be grown on the (101) facet of TiO2 nanoparticles without compromising their chemistry.

  • hierarchical oxides
  • molybdenum trioxide
  • oxide clusters
  • TiO2(101)
  • self-assembly

Footnotes

  • ↵1Present address: Department of Chemical & Environmental Engineering, Yale University, New Haven, CT 06437.

  • ↵2N.D. and G.C. contributed equally to this work.

  • ↵3To whom correspondence may be addressed. Email: roger.rousseau{at}pnnl.gov or zdenek.dohnalek{at}pnnl.gov.
  • Author contributions: R.R. and Z.D. designed research; N.D., G.C., P.K.G., and M.-S.L. performed research; N.D., G.C., P.K.G., M.-S.L., and Z.D. analyzed data; and N.D., G.C., P.K.G., V.-A.G., R.R., and Z.D. wrote the paper.

  • The authors declare no competing interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2017703118/-/DCSupplemental.

Data Availability.

All study data are included in the paper, SI Appendix, Movies S1 and S2, and Dataset S1.

Published under the PNAS license.

View Full Text

References

  1. ↵
    1. P. Poizot,
    2. S. Laruelle,
    3. S. Grugeon,
    4. L. Dupont,
    5. J. M. Tarascon
    , Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000).
    OpenUrlCrossRefPubMed
  2. ↵
    1. R. Rousseau,
    2. D. A. Dixon,
    3. B. D. Kay,
    4. Z. Dohnálek
    , Dehydration, dehydrogenation, and condensation of alcohols on supported oxide catalysts based on cyclic (WO3)3 and (MoO3)3 clusters. Chem. Soc. Rev. 43, 7664–7680 (2014).
    OpenUrl
  3. ↵
    1. X. Wang,
    2. B. Zhao,
    3. D. Jiang,
    4. Y. Xie
    , Monolayer dispersion of MoO3, NiO and their precursors on γ-Al2O3. Appl. Catal. A Gen. 188, 201–209 (1999).
    OpenUrl
  4. ↵
    1. Z. Li,
    2. L. Gao,
    3. S. Zheng
    , Investigation of the dispersion of MoO3 onto the support of mesoporous silica MCM-41. Appl. Catal. A Gen. 236, 163–171 (2002).
    OpenUrl
  5. ↵
    1. F. S. Xiao et al
    ., Dispersion of inorganic salts into zeolites and their pore modification. J. Catal. 176, 474–487 (1998).
    OpenUrl
  6. ↵
    1. L. Arnarson,
    2. S. B. Rasmussen,
    3. H. Falsig,
    4. J. V. Lauritsen,
    5. P. G. Moses
    , Coexistence of square pyramidal structures of oxo vanadium (+5) and (+4) species over low-coverage VOX/TiO2 (101) and (001) anatase catalysts. J. Phys. Chem. C 119, 23445–23452 (2015).
    OpenUrl
  7. ↵
    1. G. Zhou et al
    ., Decorating (001) dominant anatase TiO2 nanoflakes array with uniform WO3 clusters for enhanced photoelectrochemical water decontamination. Catal. Today 335, 365–371 (2019).
    OpenUrl
  8. ↵
    1. S. C. Li et al
    ., Preparation, characterization, and catalytic properties of tungsten trioxide cyclic trimers on FeO(111)/Pt(111). J. Phys. Chem. C 116, 908–916 (2012).
    OpenUrl
  9. ↵
    1. M. E. Davis
    , Ordered porous materials for emerging applications. Nature 417, 813–821 (2002).
    OpenUrlCrossRefPubMed
  10. ↵
    1. J. E. Houser,
    2. K. R. Hebert
    , The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films. Nat. Mater. 8, 415–420 (2009).
    OpenUrlCrossRefPubMed
  11. ↵
    1. J. F. Dienstmaier et al
    ., Synthesis of well-ordered COF monolayers: Surface growth of nanocrystalline precursors versus direct on-surface polycondensation. ACS Nano 5, 9737–9745 (2011).
    OpenUrlCrossRefPubMed
  12. ↵
    1. K. Miszta et al
    ., Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures. Nat. Mater. 10, 872–876 (2011).
    OpenUrlCrossRefPubMed
  13. ↵
    1. T. Woehl
    , Refocusing in situ electron microscopy: Moving beyond visualization of nanoparticle self-assembly to gain practical insights into advanced material fabrication. ACS Nano 13, 12272–12279 (2019).
    OpenUrl
  14. ↵
    1. Y. Liu et al
    ., Self-assembly of two-dimensional perovskite nanosheet building blocks into ordered ruddlesden-popper perovskite phase. J. Am. Chem. Soc. 141, 13028–13032 (2019).
    OpenUrl
  15. ↵
    1. M. R. Begley,
    2. D. S. Gianola,
    3. T. R. Ray
    , Bridging functional nanocomposites to robust macroscale devices. Science 364, eaav4299 (2019).
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. J. Wang et al
    ., Hierarchical porous carbons with layer-by-layer motif architectures from confined soft-template self-assembly in layered materials. Nat. Commun. 8, 15717 (2017).
    OpenUrlCrossRef
  17. ↵
    1. P. Munnik,
    2. P. E. de Jongh,
    3. K. P. de Jong
    , Recent developments in the synthesis of supported catalysts. Chem. Rev. 115, 6687–6718 (2015).
    OpenUrlCrossRefPubMed
  18. ↵
    1. N. R. Jaegers et al
    ., Mechanism by which tungsten oxide promotes the activity of supported V2O5/TiO2 catalysts for NO X abatement: Structural effects revealed by 51 V MAS NMR spectroscopy. Angew. Chem. 131, 12739–12746 (2019).
    OpenUrl
  19. ↵
    1. B. Gong,
    2. Z. Shao
    , Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics. Acc. Chem. Res. 46, 2856–2866 (2013).
    OpenUrl
  20. ↵
    1. P. Cheng et al
    ., Facile size-selective defect sealing in large-area atomically thin graphene membranes for sub-nanometer scale separations. Nano Lett. 20, 5951–5959 (2020).
    OpenUrl
  21. ↵
    1. B. Sapkota et al
    ., High permeability sub-nanometre sieve composite MoS2 membranes. Nat. Commun. 11, 1–9 (2020).
    OpenUrlCrossRefPubMed
  22. ↵
    1. S. Weon et al
    ., Environmental materials beyond and below the nanoscale: Single- atom catalysts. ACS EST Engg., doi:10.1021/acsestengg.0c00136 (2020).
    OpenUrlCrossRef
  23. ↵
    1. Y. Q. Su et al
    ., Stability of heterogeneous single-atom catalysts: A scaling law mapping thermodynamics to kinetics. npj Comput. Mater. 6, 144 (2020).
    OpenUrl
  24. ↵
    1. J. C. Liu,
    2. H. Xiao,
    3. J. Li
    , Constructing high-loading single-atom/cluster catalysts via an electrochemical potential window strategy. J. Am. Chem. Soc. 142, 3375–3383 (2020).
    OpenUrl
  25. ↵
    1. M. D. Marcinkowski et al
    ., Low-temperature oxidation of methanol to formaldehyde on a model single-atom catalyst: Pd atoms on Fe3O4(001). ACS Catal. 4, 10977–10982 (2019).
    OpenUrl
  26. ↵
    1. N. Doudin et al
    ., Understanding heterolytic H2 cleavage and water-assisted hydrogen spillover on Fe3O4(001)-supported single palladium atoms. ACS Catal. 9, 7876–7887 (2019).
    OpenUrl
  27. ↵
    1. H. Yang et al
    ., A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat. Commun. 10, 4585 (2019).
    OpenUrl
  28. ↵
    1. A. Beniya,
    2. S. Higashi
    , Towards dense single-atom catalysts for future automotive applications. Nat. Catal. 2, 590–602 (2019).
    OpenUrl
  29. ↵
    1. A. Mamoru
    , The oxidation activity and acid-base properties of mixed oxide catalysts containing Titania. I. The TiO2–MoO3 and TiO2–V2O5 systems. Bull. Chem. Soc. Jpn. 49, 1328–1334 (1976).
    OpenUrl
  30. ↵
    1. L. Lietti et al
    ., Characterization and reactivity of V2O5-MoO3/TiO2 De-NOx SCR catalysts. J. Catal. 187, 419–435 (1999).
    OpenUrl
  31. ↵
    1. G. D. Panagiotou et al
    ., Interfacial impregnation chemistry in the synthesis of molybdenum catalysts supported on Titania. J. Phys. Chem. C 114, 11868–11879 (2010).
    OpenUrl
  32. ↵
    1. E. E. M. Akimoto
    , Carrier effect in vapor-phase oxidation of butadiene over supported molybdena catalysts. J. Catal. 29, 191–199 (1973).
    OpenUrl
  33. ↵
    1. S. C. C. La Fontaine et al
    ., Methanol conversion over TiO2-anatase supported oxomolybdate catalysts: An integrated operando – DFT modeling approach. Phase Transit. 84, 700–713 (2011).
    OpenUrl
  34. ↵
    1. M. P. Woods,
    2. B. Mirkelamoglu,
    3. U. S. Ozkan
    , Oxygen and nitrous oxide as oxidants: Implications for ethane oxidative dehydrogenation over silica-titania-supported molybdenum. J. Phys. Chem. C 113, 10112–10119 (2009).
    OpenUrl
  35. ↵
    1. G. Murali Dhar,
    2. B. N. Srinivas,
    3. M. S. Rana,
    4. M. Kumar,
    5. S. K. Maity
    , Mixed oxide supported hydrodesulfurization catalysts–A review. Catal. Today 86, 45–60 (2003).
    OpenUrl
  36. ↵
    1. P. T. Vasudevan,
    2. J. L. G. Fierro
    , A review of deep hydrodesulfurization catalysis. Catal. Rev., Sci. Eng. 38, 161–188 (1996).
    OpenUrl
  37. ↵
    1. J. C. Védrine,
    2. G. J. Hutchings,
    3. C. J. Kiely
    , Molybdenum oxide model catalysts and vanadium phosphates as actual catalysts for understanding heterogeneous catalytic partial oxidation reactions: A contribution by Jean-Claude Volta. Catal. Today 217, 57–64 (2013).
    OpenUrl
  38. ↵
    1. N. R. Shiju,
    2. V. V. Guliants
    , Recent developments in catalysis using nanostructured materials. Appl. Catal. A Gen. 356, 1–17 (2009).
    OpenUrl
  39. ↵
    1. S. Lwin,
    2. I. E. Wachs
    , Olefin metathesis by supported metal oxide catalysts. ACS Catal. 4, 2505–2520 (2014).
    OpenUrl
  40. ↵
    1. C. Limberg
    , What does it really take to stabilize complexes of late transition metals with terminal oxo ligands? Angew. Chem. Int. Ed. Engl. 48, 2270–2273 (2009).
    OpenUrlPubMed
  41. ↵
    1. S. Yang,
    2. E. Iglesia,
    3. A. T. Bell
    , Oxidative dehydrogenation of propane over V2O5/MoO3/Al2O3 and V2O5/Cr2O3/Al2O3: Structural characterization and catalytic function. J. Phys. Chem. B 109, 8987–9000 (2005).
    OpenUrlPubMed
  42. ↵
    1. J. Arfaoui,
    2. A. Ghorbel,
    3. C. Petitto,
    4. G. Delahay
    , A new V2O5–MoO3 –TiO2–SO42− nanostructured aerogel catalyst for diesel DeNOX technology. New J. Chem. 44, 16119–16134 (2020).
    OpenUrl
  43. ↵
    1. L. Han et al
    ., Selective catalytic reduction of NO x with NH3 by using novel catalysts: State of the art and future prospects. Chem. Rev. 119, 10916–10976 (2019).
    OpenUrl
  44. ↵
    1. H. Guesmi,
    2. R. Gryboś,
    3. J. Handzlik,
    4. F. Tielens
    , Characterization of molybdenum monomeric oxide species supported on hydroxylated silica: A DFT study. Phys. Chem. Chem. Phys. 16, 18253–18260 (2014).
    OpenUrl
  45. ↵
    1. F. Kong et al
    ., Synthesis and characterization of visible light driven mesoporous nano-photocatalyst MoO3/TiO2. J. Nanosci. Nanotechnol. 12, 1931–1937 (2012).
    OpenUrlPubMed
  46. ↵
    1. Y. K. Kim,
    2. R. Rousseau,
    3. B. D. Kay,
    4. J. M. White,
    5. Z. Dohnálek
    , Catalytic dehydration of 2-propanol on (WO3)3 clusters on TiO2(110). J. Am. Chem. Soc. 130, 5059–5061 (2008).
    OpenUrlPubMed
  47. ↵
    1. M. Valden,
    2. X. Lai,
    3. D. W. Goodman
    , Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281, 1647–1650 (1998).
    OpenUrlAbstract/FREE Full Text
  48. ↵
    1. S. Vajda,
    2. M. G. White
    , Catalysis applications of size-selected cluster deposition. ACS Catal. 5, 7152–7176 (2015).
    OpenUrl
  49. ↵
    1. Z. Li et al
    ., Alcohol dehydration on monooxo W═O and dioxo O═W═O species. J. Phys. Chem. Lett. 3, 2168–2172 (2012).
    OpenUrl
  50. ↵
    1. Z. Fang et al
    ., Oxidation, reduction, and condensation of alcohols over (MO3)3 (M = Mo, W) nanoclusters. J. Phys. Chem. C 118, 22620–22634 (2014).
    OpenUrl
  51. ↵
    1. L. Arnarson,
    2. H. Falsig,
    3. S. B. Rasmussen,
    4. J. V. Lauritsen,
    5. P. G. Moses
    , A complete reaction mechanism for standard and fast selective catalytic reduction of nitrogen oxides on low coverage VOX/TiO2(001) catalysts. J. Catal. 346, 188–197 (2017).
    OpenUrl
  52. ↵
    1. Z. Li et al
    ., Ethanol conversion on cyclic (MO3)3 (M = Mo, W) clusters. J. Phys. Chem. C 118, 4869–4877 (2014).
    OpenUrl
  53. ↵
    1. X. Q. Gong,
    2. A. Selloni,
    3. M. Batzill,
    4. U. Diebold
    , Steps on anatase TiO2(101). Nat. Mater. 5, 665–670 (2006).
    OpenUrlCrossRefPubMed
  54. ↵
    1. W. Hebenstreit,
    2. N. Ruzycki,
    3. G. S. Herman,
    4. Y. Gao,
    5. U. Diebold
    , Scanning tunneling microscopy investigation of the TiO2 anatase (101) surface. Phys. Rev. B 62, R16334–R16336 (2000).
    OpenUrl
  55. ↵
    1. Y. He,
    2. O. Dulub,
    3. H. Cheng,
    4. A. Selloni,
    5. U. Diebold
    , Evidence for the predominance of subsurface defects on reduced anatase TiO2(101). Phys. Rev. Lett. 102, 106105 (2009).
    OpenUrlCrossRefPubMed
  56. ↵
    1. U. Diebold
    , The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003).
    OpenUrlCrossRef
  57. ↵
    1. M. Setvin,
    2. M. Schmid,
    3. U. Diebold
    , Aggregation and electronically induced migration of oxygen vacancies in TiO2 anatase. Phys. Rev. B 91, 195403 (2015).
    OpenUrl
  58. ↵
    1. K. Hamraoui,
    2. S. Cristol,
    3. E. Payen,
    4. J. F. Paul
    , Computational investigation of TiO2-supported isolated oxomolybdenum species. J. Phys. Chem. C 111, 3963–3972 (2007).
    OpenUrl
  59. ↵
    1. K. Hamraoui,
    2. S. Cristol,
    3. E. Payen,
    4. J. F. Paul
    , Structure and reducibility of titania-supported monomeric and dimeric molybdenum oxide entities studied by DFT calculations. J. Mol. Struct. THEOCHEM 903, 73–82 (2009).
    OpenUrl
  60. ↵
    1. H. Y. Kim,
    2. H. M. Lee,
    3. R. G. S. Pala,
    4. H. Metiu
    , Oxidative dehydrogenation of methanol to formaldehyde by isolated vanadium, molybdenum, and chromium oxide clusters supported on rutile TiO2(110). J. Phys. Chem. C 113, 16083–16093 (2009).
    OpenUrl
  61. ↵
    1. S. C. Li et al
    ., Intrinsic diffusion of hydrogen on rutile TiO2(110). J. Am. Chem. Soc. 130, 9080–9088 (2008).
    OpenUrlCrossRefPubMed
  62. ↵
    1. M. T. Greiner,
    2. L. Chai,
    3. M. G. Helander,
    4. W. M. Tang,
    5. Z. H. Lu
    , Metal/metal-oxide interfaces: How metal contacts affect the work function and band structure of MoO3. Adv. Funct. Mater. 23, 215–226 (2013).
    OpenUrlCrossRef
  63. ↵
    1. M. T. Greiner,
    2. L. Chai,
    3. M. G. Helander,
    4. W. M. Tang,
    5. Z. H. Lu
    , Transition metal oxide work functions: The influence of cation oxidation state and oxygen vacancies. Adv. Funct. Mater. 22, 4557–4568 (2012).
    OpenUrl
  64. ↵
    1. S. Doniacht,
    2. M. Sunjics
    , Many-electron singularity in X-ray photoemission and X-ray line spectra from metals. J. Phys. C Solid State Phys. 3, 285 (1970).
    OpenUrlCrossRef
  65. ↵
    1. J. Hutter,
    2. M. Iannuzzi,
    3. F. Schiffmann,
    4. J. Vandevondele
    , Cp2k: Atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 15–25 (2014).
    OpenUrl
  66. ↵
    1. J. P. Perdew,
    2. K. Burke,
    3. M. Ernzerhof
    , Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
    OpenUrlCrossRefPubMed
  67. ↵
    1. J. P. Perdew et al
    ., Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).
    OpenUrlCrossRefPubMed
  68. ↵
    1. S. Grimme,
    2. J. Antony,
    3. S. Ehrlich,
    4. H. Krieg
    , A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
    OpenUrlCrossRefPubMed
  69. ↵
    1. S. Goedecker,
    2. M. Teter,
    3. J. Hutter
    , Separable dual-space Gaussian pseudopotentials. Phys. Rev. B Condens. Matter 54, 1703–1710 (1996).
    OpenUrlCrossRefPubMed
  70. ↵
    1. J. VandeVondele,
    2. J. Hutter
    , Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).
    OpenUrlCrossRefPubMed
  71. ↵
    1. S. L. Dudarev,
    2. G. A. Botton,
    3. S. Y. Savrasov,
    4. C. J. Humphreys,
    5. A. P. Sutton
    , Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B Condens. Matter Mater. Phys. 57, 1505–1509 (1998).
    OpenUrlCrossRef
  72. ↵
    1. G. Xiong et al
    ., Photoemission electron microscopy of TiO2 anatase films embedded with rutile nanocrystals. Adv. Funct. Mater. 17, 2133–2138 (2007).
    OpenUrl
  73. ↵
    1. K. Onda,
    2. B. Li,
    3. H. Petek
    , Two-photon photoemission spectroscopy of TiO2(110) surfaces modified by defects and O2 or H2O adsorbates. Phys. Rev. B 70, 045415 (2004).
    OpenUrl
  74. ↵
    1. G. Liu,
    2. W. Jaegermann,
    3. J. He,
    4. V. Sundström,
    5. L. Sun
    , XPS and UPS characterization of the TiO2/ZnPcGly heterointerface: Alignment of energy levels. J. Phys. Chem. B 106, 5814–5819 (2002).
    OpenUrl
  75. ↵
    1. A. Borodin,
    2. M. Reichling
    , Characterizing TiO2(110) surface states by their work function. Phys. Chem. Chem. Phys. 13, 15442–15447 (2011).
    OpenUrlPubMed

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

Subscribers, for more details, please visit our Subscriptions FAQ.

Please click here to log into the PNAS submission website.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Creating self-assembled arrays of mono-oxo (MoO3)1 species on TiO2(101) via deposition and decomposition of (MoO3)n oligomers
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Creating self-assembled arrays of mono-oxo (MoO3)1 species on TiO2(101) via deposition and decomposition of (MoO3)n oligomers
Nassar Doudin, Greg Collinge, Pradeep Kumar Gurunathan, Mal-Soon Lee, Vassiliki-Alexandra Glezakou, Roger Rousseau, Zdenek Dohnálek
Proceedings of the National Academy of Sciences Jan 2021, 118 (4) e2017703118; DOI: 10.1073/pnas.2017703118

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Creating self-assembled arrays of mono-oxo (MoO3)1 species on TiO2(101) via deposition and decomposition of (MoO3)n oligomers
Nassar Doudin, Greg Collinge, Pradeep Kumar Gurunathan, Mal-Soon Lee, Vassiliki-Alexandra Glezakou, Roger Rousseau, Zdenek Dohnálek
Proceedings of the National Academy of Sciences Jan 2021, 118 (4) e2017703118; DOI: 10.1073/pnas.2017703118
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley

Article Classifications

  • Physical Sciences
  • Chemistry
Proceedings of the National Academy of Sciences: 118 (4)
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Results and Discussion
    • Summary
    • Methods
    • Data Availability.
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Water from a faucet fills a glass.
News Feature: How “forever chemicals” might impair the immune system
Researchers are exploring whether these ubiquitous fluorinated molecules might worsen infections or hamper vaccine effectiveness.
Image credit: Shutterstock/Dmitry Naumov.
Reflection of clouds in the still waters of Mono Lake in California.
Inner Workings: Making headway with the mysteries of life’s origins
Recent experiments and simulations are starting to answer some fundamental questions about how life came to be.
Image credit: Shutterstock/Radoslaw Lecyk.
Cave in coastal Kenya with tree growing in the middle.
Journal Club: Small, sharp blades mark shift from Middle to Later Stone Age in coastal Kenya
Archaeologists have long tried to define the transition between the two time periods.
Image credit: Ceri Shipton.
Mouse fibroblast cells. Electron bifurcation reactions keep mammalian cells alive.
Exploring electron bifurcation
Jonathon Yuly, David Beratan, and Peng Zhang investigate how electron bifurcation reactions work.
Listen
Past PodcastsSubscribe
Panda bear hanging in a tree
How horse manure helps giant pandas tolerate cold
A study finds that giant pandas roll in horse manure to increase their cold tolerance.
Image credit: Fuwen Wei.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Cozzarelli Prize
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490