Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Perspective

Dog domestication and the dual dispersal of people and dogs into the Americas

View ORCID ProfileAngela R. Perri, View ORCID ProfileTatiana R. Feuerborn, Laurent A. F. Frantz, View ORCID ProfileGreger Larson, View ORCID ProfileRipan S. Malhi, View ORCID ProfileDavid J. Meltzer, and View ORCID ProfileKelsey E. Witt
PNAS February 9, 2021 118 (6) e2010083118; https://doi.org/10.1073/pnas.2010083118
Angela R. Perri
aDepartment of Archaeology, Durham University, Durham DH1 3LE, United Kingdom;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Angela R. Perri
  • For correspondence: angela.r.perri@durham.ac.uk dmeltzer@smu.edu kelsey_witt_dillon@brown.edu
Tatiana R. Feuerborn
bGLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark;
cThe Qimmeq Project, University of Greenland, 3905 Nuussuaq, Greenland;
dArchaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, 114 19 Stockholm, Sweden;
eDepartment of Bioinformatics and Genetics, Swedish Museum of Natural History, 114 18 Stockholm, Sweden;
fCentre for Palaeogenetics, 114 18 Stockholm, Sweden;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Tatiana R. Feuerborn
Laurent A. F. Frantz
gPalaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich D-80539, Germany;
hSchool of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Greger Larson
iThe Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford OX1 3QY, United Kingdom;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Greger Larson
Ripan S. Malhi
jDepartment of Anthropology, University of Illinois at Urbana–Champaign, Urbana, IL 61801;
kCarl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ripan S. Malhi
David J. Meltzer
lDepartment of Anthropology, Southern Methodist University, Dallas, TX 75205;
mLundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for David J. Meltzer
  • For correspondence: angela.r.perri@durham.ac.uk dmeltzer@smu.edu kelsey_witt_dillon@brown.edu
Kelsey E. Witt
nDepartment of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912;
oCenter for Computational and Molecular Biology, Brown University, Providence, RI 02912
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kelsey E. Witt
  • For correspondence: angela.r.perri@durham.ac.uk dmeltzer@smu.edu kelsey_witt_dillon@brown.edu
  1. Edited by Theodore G. Schurr, University of Pennsylvania, Philadelphia, PA, and accepted by Editorial Board Member Dolores R. Piperno December 8, 2020 (received for review June 4, 2020)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

Advances in the isolation and sequencing of ancient DNA have begun to reveal the population histories of both people and dogs. Over the last 10,000 y, the genetic signatures of ancient dog remains have been linked with known human dispersals in regions such as the Arctic and the remote Pacific. It is suspected, however, that this relationship has a much deeper antiquity, and that the tandem movement of people and dogs may have begun soon after the domestication of the dog from a gray wolf ancestor in the late Pleistocene. Here, by comparing population genetic results of humans and dogs from Siberia, Beringia, and North America, we show that there is a close correlation in the movement and divergences of their respective lineages. This evidence places constraints on when and where dog domestication took place. Most significantly, it suggests that dogs were domesticated in Siberia by ∼23,000 y ago, possibly while both people and wolves were isolated during the harsh climate of the Last Glacial Maximum. Dogs then accompanied the first people into the Americas and traveled with them as humans rapidly dispersed into the continent beginning ∼15,000 y ago.

  • archaeology
  • genetics
  • domestication
  • dogs
  • peopling of the Americas

Footnotes

  • ↵1To whom correspondence may be addressed. Email: angela.r.perri{at}durham.ac.uk, dmeltzer{at}smu.edu, or kelsey_witt_dillon{at}brown.edu.
  • Author contributions: A.R.P., L.A.F.F., G.L., D.J.M., and K.E.W. designed research; A.R.P., T.R.F., L.A.F.F., G.L., R.S.M., D.J.M., and K.E.W. performed research; A.R.P., T.R.F., L.A.F.F., G.L., R.S.M., D.J.M., and K.E.W. analyzed data; and A.R.P., T.R.F., L.A.F.F., G.L., R.S.M., D.J.M., and K.E.W. wrote the paper.

  • The authors declare no competing interest.

  • This article is a PNAS Direct Submission. T.G.S. is a guest editor invited by the Editorial Board.

  • This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2010083118/-/DCSupplemental.

Data Availability.

All study data are included in the article and/or SI Appendix.

Published under the PNAS license.

View Full Text

References

  1. ↵
    1. A. H. Freedman et al
    ., Genome sequencing highlights the dynamic early history of dogs. PLoS Genet. 10, e1004016 (2014).
    OpenUrlCrossRefPubMed
  2. ↵
    1. G. Larson et al
    ., Rethinking dog domestication by integrating genetics, archeology, and biogeography. Proc. Natl. Acad. Sci. U.S.A. 109, 8878–8883 (2012).
    OpenUrlAbstract/FREE Full Text
  3. ↵
    1. A. Perri
    , A wolf in dog’s clothing: Initial dog domestication and Pleistocene wolf variation. J. Archaeol. Sci. 68, 1–4 (2016).
    OpenUrlCrossRef
  4. ↵
    1. L. Janssens et al
    ., A new look at an old dog: Bonn-Oberkassel reconsidered. J. Archaeol. Sci. 92, 126–138 (2018).
    OpenUrlCrossRefPubMed
  5. ↵
    1. M. Ollivier et al
    ., Dogs accompanied humans during the Neolithic expansion into Europe. Biol. Lett. 14, 20180286 (2018).
    OpenUrlCrossRefPubMed
  6. ↵
    1. K. Greig et al
    ., Complete mitochondrial genomes of New Zealand’s first dogs. PLoS One 10, e0138536 (2015).
    OpenUrlCrossRefPubMed
  7. ↵
    1. C. Ameen et al
    ., Specialized sledge dogs accompanied Inuit dispersal across the North American Arctic. Proc. Biol. Sci. 286, 20191929 (2019).
    OpenUrl
  8. ↵
    1. S. K. Brown,
    2. C. M. Darwent,
    3. B. N. Sacks
    , Ancient DNA evidence for genetic continuity in arctic dogs. J. Archaeol. Sci. 40, 1279–1288 (2013).
    OpenUrlCrossRef
  9. ↵
    1. A. Perri et al
    ., New evidence of the earliest domestic dogs in the Americas. Am. Antiq. 84, 68–87 (2019).
    OpenUrl
  10. ↵
    1. J. V. Moreno-Mayar et al
    ., Early human dispersals within the Americas. Science 362, eaav2621 (2018).
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. L. G. Davis et al
    ., Late upper paleolithic occupation at Cooper’s Ferry, Idaho, USA, ∼16,000 years ago. Science 365, 891–897 (2019).
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. A. Perri
    , A wolf in dog ’ s clothing: Initial dog domestication and Pleistocene wolf variation. J. Archaeol. Sci. 68, 1–4 (2016).
    OpenUrlCrossRef
  13. ↵
    1. L. Janssens et al
    ., A new look at an old dog: Bonn-Oberkassel reconsidered. J. Archaeol. Sci. 92, 126–138 (2018).
    OpenUrlCrossRefPubMed
  14. ↵
    1. P. Skoglund,
    2. E. Ersmark,
    3. E. Palkopoulou,
    4. L. Dalén
    , Ancient wolf genome reveals an early divergence of domestic dog ancestors and admixture into high-latitude breeds. Curr. Biol. 25, 1515–1519 (2015).
    OpenUrlCrossRefPubMed
  15. ↵
    1. L. A. F. Frantz et al
    ., Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science 352, 1228–1231 (2016).
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. M. Ní Leathlobhair et al
    ., The evolutionary history of dogs in the Americas. Science 361, 81–85 (2018).
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. J. A. Leonard et al
    ., Ancient DNA evidence for old world origin of new world dogs. Science 298, 1613–1616 (2002).
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. K. E. Witt et al
    ., DNA analysis of ancient dogs of the Americas: Identifying possible founding haplotypes and reconstructing population histories. J. Hum. Evol. 79, 105–118 (2015).
    OpenUrlCrossRefPubMed
  19. ↵
    1. C. Lindqvist,
    2. O. P. Rajora
    1. O. Thalmann,
    2. A. R. Perri
    , “Paleogenomic inferences of dog domestication” in Paleogenomics: Genome-Scale Analysis of Ancient DNA, C. Lindqvist, O. P. Rajora, Eds. (Springer International Publishing, 2019), pp. 273–306.
  20. ↵
    1. G. Larson,
    2. D. G. Bradley
    , How much is that in dog years? The advent of canine population genomics. PLoS Genet. 10, e1004093 (2014).
    OpenUrl
  21. ↵
    1. L. A. F. Frantz,
    2. D. G. Bradley,
    3. G. Larson,
    4. L. Orlando
    , Animal domestication in the era of ancient genomics. Nat. Rev. Genet. 21, 449–460 (2020).
    OpenUrl
  22. ↵
    1. M. Germonpré et al
    ., Fossil dogs and wolves from palaeolithic sites in Belgium, the Ukraine and Russia: Osteometry, ancient DNA and stable isotopes. J. Archaeol. Sci. 36, 473–490 (2009).
    OpenUrlCrossRef
  23. ↵
    1. M. Germonpré et al
    ., Palaeolithic and prehistoric dogs and Pleistocene wolves from Yakutia: Identification of isolated skulls. J. Archaeol. Sci. 78, 1–19 (2017).
    OpenUrl
  24. ↵
    1. M. Germonpré,
    2. M. Lázničková-Galetová,
    3. M. V. Sablin
    , Palaeolithic dog skulls at the Gravettian Předmostí site, the Czech Republic. J. Archaeol. Sci. 39, 184–202 (2012).
    OpenUrlCrossRef
  25. ↵
    1. M. V. Sablin,
    2. G. A. Khlopachev
    , The earliest ice age dogs: Evidence from Eliseevichi 1. Curr. Anthropol. 43, 795–799 (2002).
    OpenUrlCrossRef
  26. ↵
    1. E. Camarós,
    2. S. C. Münzel,
    3. M. Cueto,
    4. F. Rivals,
    5. N. J. Conard
    , The evolution of Paleolithic hominin–carnivore interaction written in teeth: Stories from the Swabian Jura (Germany). J. Archaeol. Sci. Rep. 6, 798–809 (2016).
    OpenUrl
  27. ↵
    1. N. D. Ovodov et al
    ., A 33,000-year-old incipient dog from the Altai Mountains of Siberia: Evidence of the earliest domestication disrupted by the last glacial maximum. PLoS One 6, e22821 (2011).
    OpenUrlCrossRefPubMed
  28. ↵
    1. A. S. Druzhkova et al
    ., Ancient DNA analysis affirms the canid from Altai as a primitive dog. PLoS One 8, e57754 (2013).
    OpenUrlCrossRefPubMed
  29. ↵
    1. H. Bocherens et al
    ., Reconstruction of the Gravettian food-web at Předmostí I using multi-isotopic tracking (13C, 15N, 34S) of bone collagen. Quat. Int. 359-360, 211–228 (2015).
    OpenUrl
  30. ↵
    1. O. Thalmann et al
    ., Complete mitochondrial genomes of ancient canids suggest a European origin of domestic dogs. Science 342, 871–874 (2013).
    OpenUrlAbstract/FREE Full Text
  31. ↵
    1. K. A. Prassack,
    2. J. DuBois,
    3. M. Lázničková-Galetová,
    4. M. Germonpré,
    5. P. S. Ungar
    , Dental microwear as a behavioral proxy for distinguishing between canids at the Upper Paleolithic (Gravettian) site of Předmostí, Czech Republic. J. Archaeol. Sci. 115, 105092 (2020).
    OpenUrl
  32. ↵
    1. L. Janssens,
    2. A. Perri,
    3. P. Crombé,
    4. S. Van Dongen,
    5. D. Lawler
    , An evaluation of classical morphologic and morphometric parameters reported to distinguish wolves and dogs. J. Archaeol. Sci. Rep. 23, 501–533 (2019).
    OpenUrl
  33. ↵
    1. A. G. Drake et al
    ., Three-dimensional geometric morphometric analysis of fossil canid Mandibles and skulls. Sci. Rep. 7, 9508 (2017).
    OpenUrlCrossRef
  34. ↵
    1. A. G. Drake,
    2. M. Coquerelle,
    3. G. Colombeau
    , 3D morphometric analysis of fossil canid skulls contradicts the suggested domestication of dogs during the late Paleolithic. Sci. Rep. 5, 8299 (2015).
    OpenUrlCrossRefPubMed
  35. ↵
    1. M. Boudadi-Maligne,
    2. G. Escarguel
    , A biometric re-evaluation of recent claims for Early Upper Palaeolithic wolf domestication in Eurasia. J. Archaeol. Sci. 45, 80–89 (2014).
    OpenUrlCrossRef
  36. ↵
    1. C. Ameen et al
    ., A landmark-based approach for assessing the reliability of mandibular tooth crowding as a marker of dog domestication. J. Archaeol. Sci. 85, 41–50 (2017).
    OpenUrl
  37. ↵
    1. L. Loog et al
    ., Ancient DNA suggests modern wolves trace their origin to a Late Pleistocene expansion from Beringia. Mol. Ecol. 29, 1596–1610 (2020).
    OpenUrl
  38. ↵
    1. L. R. Botigué et al
    ., Ancient European dog genomes reveal continuity since the Early Neolithic. Nat. Commun. 8, 16082 (2017).
    OpenUrlCrossRefPubMed
  39. ↵
    1. L. A. F. Frantz et al
    ., Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science 352, 1228–1231 (2016).
    OpenUrlAbstract/FREE Full Text
  40. ↵
    1. J. Wilczyński et al
    ., Friend or foe? Large canid remains from pavlovian sites and their archaeozoological context. J. Anthropol. Archaeol. 59, 101197 (2020).
    OpenUrl
  41. ↵
    1. J. Svoboda
    1. A. Perri,
    2. S. Sazelova
    , “The role of large canids: Preliminary variabilities forming the population structure in Moravia (Dolni Vestonice II)” in Dolní Vestonice II: Chronostratigraphy, Paleoethnology, Paleoanthropology, J. Svoboda, Ed. (Academy of Sciences of the Czech Republic, Institute of Archaeology, 2016), pp. 138–146.
  42. ↵
    1. M. Germonpré et al
    ., Palaeolithic dogs and the early domestication of the wolf: A reply to the comments of. J. Archaeol. Sci. 40, 786–792 (2013).
    OpenUrlCrossRef
  43. ↵
    1. P. Galeta,
    2. M. Lázničková-Galetová,
    3. M. Sablin,
    4. M. Germonpré
    , Morphological evidence for early dog domestication in the European Pleistocene: New evidence from a randomization approach to group differences. Anat. Rec. (Hoboken) 304, 42–62 (2020).
    OpenUrl
  44. ↵
    1. S. J. Crockford,
    2. Y. V. Kuzmin
    , Comments on Germonpré et al., Journal of Archaeological Science 36, 2009 “Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: osteometry, ancient DNA and stable isotopes”, and Germonpré, Lázkičková-Galetová, and Sablin, Journal of Archaeological Science 39, 2012 “Palaeolithic dog skulls at the Gravettian Předmostí site, the Czech Republic.”. J. Archaeol. Sci. 39, 2797–2801 (2012).
    OpenUrlCrossRef
  45. ↵
    1. D. F. Morey
    , In search of paleolithic dogs: A quest with mixed results. J. Archaeol. Sci. 52, 300–307 (2014).
    OpenUrlCrossRef
  46. ↵
    1. А. В. Кандыба,
    2. С. Е. Федоров,
    3. А. И. Дмитриев
    , Местонахождение Сыалах-новый археологический объект позднегонеоплейстоцена Сибирской Арктики. Проблемы археологии 21, 90–93 (2015).
  47. ↵
    1. J. Ramos-Madrigal et al
    ., Genomes of Pleistocene Siberian wolves uncover multiple extinct wolf lineages. Curr. Biol. In press.
  48. ↵
    1. M. Germonpré,
    2. M. Lázničková-Galetová,
    3. R. J. Losey,
    4. J. Räikkönen,
    5. M. V. Sablin
    , Large canids at the Gravettian Předmostí site, the Czech Republic: The mandible. Quat. Int. 359-360, 261–279 (2015).
    OpenUrl
  49. ↵
    1. M. Pionnier-Capitan et al
    ., New evidence for upper palaeolithic small domestic dogs in south-western Europe. J. Archaeol. Sci. 38, 2123–2140 (2011).
    OpenUrlCrossRef
  50. ↵
    1. S. J. Crockford
    1. R. Musil
    , “Domestication of wolves in central European Magdalenian sites” in Dogs Through Time: An Archaeological Perspective, S. J. Crockford, Ed. (BAR International Series, British Archaeological Reports, Oxford, 2000), vol. 889, pp. 21–28.
    OpenUrl
  51. ↵
    1. E. Tchernov,
    2. F. F. Valla
    , Two new dogs, and other natufian dogs, from the southern levant. J. Archaeol. Sci. 24, 65–95 (1997).
    OpenUrlCrossRef
  52. ↵
    1. F. Boschin et al
    ., The first evidence for Late Pleistocene dogs in Italy. Sci. Rep. 10, 13313 (2020).
    OpenUrl
  53. ↵
    1. P. Morel et al
    ., Un Campement Magdalénien au Bord du Lac de Neuchâtel: Étude Archéozoologique (Secteur 1) (Musée cantonal d’archéologie, 1997).
  54. ↵
    1. A. Bergström et al
    ., Origins and genetic legacy of prehistoric dogs. Science 370, 557–564 (2020).
    OpenUrlAbstract/FREE Full Text
  55. ↵
    1. B. van Asch et al
    ., Pre-Columbian origins of native American dog breeds, with only limited replacement by European dogs, confirmed by mtDNA analysis. Proc. Biol. Sci. 280, 20131142 (2013).
    OpenUrlCrossRefPubMed
  56. ↵
    1. M. Sikora et al
    ., The population history of northeastern Siberia since the Pleistocene. Nature 570, 182–188 (2019).
    OpenUrl
  57. ↵
    1. B. Llamas et al
    ., Ancient mitochondrial DNA provides high-resolution time scale of the peopling of the Americas. Sci. Adv. 2, e1501385 (2016).
    OpenUrlFREE Full Text
  58. ↵
    1. E. Tamm et al
    ., Beringian standstill and spread of Native American founders. PLoS One 2, e829 (2007).
    OpenUrlCrossRefPubMed
  59. ↵
    1. T. Pinotti et al
    ., Y chromosome sequences reveal a short Beringian standstill, rapid expansion, and early population structure of native American founders. Curr. Biol. 29, 149–157.e3 (2019).
    OpenUrlCrossRefPubMed
  60. ↵
    1. J. V. Moreno-Mayar et al
    ., Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans. Nature 553, 203–207 (2018).
    OpenUrlCrossRefPubMed
  61. ↵
    1. D. J. Meltzer
    , First Peoples in a New World: Populating Ice Age America (Cambridge University Press, 2021).
  62. ↵
    1. M. Rasmussen et al
    ., The genome of a Late Pleistocene human from a Clovis burial site in western Montana. Nature 506, 225–229 (2014).
    OpenUrlCrossRefPubMed
  63. ↵
    1. T. D. Dillehay et al
    ., Monte verde: Seaweed, food, medicine, and the peopling of south America. Science 320, 784–786 (2008).
    OpenUrlAbstract/FREE Full Text
  64. ↵
    1. D. Froese,
    2. J. M. Young,
    3. S. L. Norris,
    4. M. Margold
    , Availability and viability of the ice-free corridor and pacific coast routes for the peopling of the Americas. SAA Archaeol. Rec. 19, 27–33 (2019).
    OpenUrl
  65. ↵
    1. C. Posth et al
    ., Reconstructing the deep population history of Central and South America. Cell 175, 1185–1197.e22 (2018).
    OpenUrlCrossRefPubMed
  66. ↵
    1. S. J. Fiedel
    , Man’s best friend–mammoth’s worst enemy? A speculative essay on the role of dogs in paleoindian colonization and megafaunal extinction. World Archaeol. 37, 11–25 (2005).
    OpenUrlCrossRef
  67. ↵
    1. M. S. Sinding et al
    ., Arctic-adapted dogs emerged at the Pleistocene-Holocene transition. Science 368, 1495–1499 (2020).
    OpenUrlAbstract/FREE Full Text
  68. ↵
    1. P. Flegontov et al
    ., Palaeo-Eskimo genetic ancestry and the peopling of Chukotka and North America. Nature 570, 236–240 (2019).
    OpenUrlPubMed
  69. ↵
    1. B. A. Potter,
    2. J. D. Irish,
    3. J. D. Reuther,
    4. H. J. McKinney
    , New insights into eastern beringian mortuary behavior: A terminal Pleistocene double infant burial at upward sun river. Proc. Natl. Acad. Sci. U.S.A. 111, 17060–17065 (2014).
    OpenUrlAbstract/FREE Full Text
  70. ↵
    1. B. A. Potter,
    2. J. D. Irish,
    3. J. D. Reuther,
    4. C. Gelvin-Reymiller,
    5. V. T. Holliday
    , A terminal Pleistocene child cremation and residential structure from eastern Beringia. Science 331, 1058–1062 (2011).
    OpenUrlAbstract/FREE Full Text
  71. ↵
    1. T. M. Friesen,
    2. O. K. Mason
    1. T. Goebel,
    2. B. Potter
    , “First traces” in The Oxford Handbook of the Prehistoric Arctic, T. M. Friesen, O. K. Mason, Eds. (Oxford University Press, 2016), p. 223.
  72. ↵
    1. M. R. Waters et al
    ., Pre-Clovis projectile points at the debra L. Friedkin site, Texas-implications for the late Pleistocene peopling of the Americas. Sci. Adv. 4, eaat4505 (2018).
    OpenUrlFREE Full Text
  73. ↵
    1. D. L. Jenkins et al
    ., Geochronology, archaeological context, and DNA at the paisley caves. Paleoamerican Odyssey 32, 485–510 (2013).
    OpenUrl
  74. ↵
    1. Y. V. Kuzmin,
    2. S. G. Keates
    , Siberia and neighboring regions in the last glacial maximum: Did people occupy northern Eurasia at that time? Archaeol. Anthropol. Sci. 10, 111–124 (2018).
    OpenUrl
  75. ↵
    1. K. E. Graf,
    2. C. V. Ketron,
    3. M. R. Waters
    1. K. E. Graf
    , “Siberian odyssey” in Paleoamerican Odyssey, K. E. Graf, C. V. Ketron, M. R. Waters, Eds. (Texas A&M University Press, 2014), pp. 65–80.
  76. ↵
    1. G.-D. Wang et al
    ., Out of southern east Asia: The natural history of domestic dogs across the world. Cell Res. 26, 21–33 (2016).
    OpenUrlCrossRefPubMed
  77. ↵
    1. L. M. Shannon et al
    ., Genetic structure in village dogs reveals a Central Asian domestication origin. Proc. Natl. Acad. Sci. U.S.A. 112, 13639–13644 (2015).
    OpenUrlAbstract/FREE Full Text
  78. ↵
    1. M. Lipson,
    2. D. Reich
    , A working model of the deep relationships of diverse modern human genetic lineages outside of Africa. Mol. Biol. Evol. 34, 889–902 (2017).
    OpenUrl
  79. ↵
    1. M. Raghavan et al
    ., Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 505, 87–91 (2014).
    OpenUrlCrossRefPubMed
  80. ↵
    1. Y. V. Kuzmin
    , Mammalian fauna from palaeolithic sites in the upper Yenisei river basin (southern Siberia): Review of the current zooarchaeological evidence. Int. J. Osteoarchaeol. 21, 218–228 (2011).
    OpenUrl
  81. ↵
    1. H. Russ,
    2. U. Albarella,
    3. K. Vickers,
    4. M. Rizzetto,
    5. S. Viner-Daniels
    1. M. Germonpré,
    2. M. V. Sablin,
    “Humans and mammals in the Upper Palaeolithic of Russia” in The Oxford Handbook of Zooarchaeology, H. Russ, U. Albarella, K. Vickers, M. Rizzetto, S. Viner-Daniels, Eds. (Oxford University Press, 2017), pp. 25–38.
  82. ↵
    1. S. J. Olsen
    , Origins of the Domestic Dog: The Fossil Record (University of Arizona Press, 1985).
  83. ↵
    1. J. R. Harlan et al
    1. M. A. Zeder
    , “Pathways to animal domestication” in Biodiversity in Agriculture: Domestication, Evolution, and Sustainability, J. R. Harlan et al., Eds. (Cambridge University Press, 2012), pp. 227–259.

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

Subscribers, for more details, please visit our Subscriptions FAQ.

Please click here to log into the PNAS submission website.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Dog domestication and the dual dispersal of people and dogs into the Americas
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Dog domestication and the dual dispersal of people and dogs into the Americas
Angela R. Perri, Tatiana R. Feuerborn, Laurent A. F. Frantz, Greger Larson, Ripan S. Malhi, David J. Meltzer, Kelsey E. Witt
Proceedings of the National Academy of Sciences Feb 2021, 118 (6) e2010083118; DOI: 10.1073/pnas.2010083118

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Dog domestication and the dual dispersal of people and dogs into the Americas
Angela R. Perri, Tatiana R. Feuerborn, Laurent A. F. Frantz, Greger Larson, Ripan S. Malhi, David J. Meltzer, Kelsey E. Witt
Proceedings of the National Academy of Sciences Feb 2021, 118 (6) e2010083118; DOI: 10.1073/pnas.2010083118
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 118 (6)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Biological Sciences
  • Genetics

Jump to section

  • Article
    • Abstract
    • The First Dogs
    • The First People in the Americas
    • Reconciling Lineage Branching in Late-Pleistocene Humans and Dogs
    • Dog Domestication in Siberia
    • Conclusions
    • Data Availability.
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Surgeons hands during surgery
Inner Workings: Advances in infectious disease treatment promise to expand the pool of donor organs
Despite myriad challenges, clinicians see room for progress.
Image credit: Shutterstock/David Tadevosian.
Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Double helix
Journal Club: Noncoding DNA shown to underlie function, cause limb malformations
Using CRISPR, researchers showed that a region some used to label “junk DNA” has a major role in a rare genetic disorder.
Image credit: Nathan Devery.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Multi-color molecular model
Enzymatic breakdown of PET plastic
A study demonstrates how two enzymes—MHETase and PETase—work synergistically to depolymerize the plastic pollutant PET.
Image credit: Aaron McGeehan (artist).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490