Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Collective dynamics in entangled worm and robot blobs

View ORCID ProfileYasemin Ozkan-Aydin, View ORCID ProfileDaniel I. Goldman, and View ORCID ProfileM. Saad Bhamla
PNAS February 9, 2021 118 (6) e2010542118; https://doi.org/10.1073/pnas.2010542118
Yasemin Ozkan-Aydin
aSchool of Physics, Georgia Institute of Technology, Atlanta, GA 30332;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yasemin Ozkan-Aydin
Daniel I. Goldman
aSchool of Physics, Georgia Institute of Technology, Atlanta, GA 30332;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Daniel I. Goldman
M. Saad Bhamla
bSchool of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Saad Bhamla
  • For correspondence: saadb@chbe.gatech.edu
  1. Edited by John A. Rogers, Northwestern University, Evanston, IL, and approved December 31, 2020 (received for review May 27, 2020)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

Living organisms form collectives across all scales, enabling biological functions not accessible by individuals alone. In a few cases, the individuals are physically connected to each other, forming an additional class of entangled active matter systems with emergent mechanofunctionalities of the collective. Here, we describe the dynamics of macroscopic aquatic worms that braid their long, soft bodies to form large entangled worm blobs. We discover that the worm blob behaves as a living material to undergo dynamic shape transformations to reduce evaporation or break-symmetry and locomote to safety against thermal stresses. We validate our biological hypotheses in robophysical swarming blobs, which pave the way for additional classes of mechanofunctional active matter systems and collective emergent robotics.

Abstract

Living systems at all scales aggregate in large numbers for a variety of functions including mating, predation, and survival. The majority of such systems consist of unconnected individuals that collectively flock, school, or swarm. However, some aggregations involve physically entangled individuals, which can confer emergent mechanofunctional material properties to the collective. Here, we study in laboratory experiments and rationalize in theoretical and robophysical models the dynamics of physically entangled and motile self-assemblies of 1-cm-long California blackworms (Lumbriculus variegatus, Annelida: Clitellata: Lumbriculidae). Thousands of individual worms form braids with their long, slender, and flexible bodies to make a three-dimensional, soft, and shape-shifting “blob.” The blob behaves as a living material capable of mitigating damage and assault from environmental stresses through dynamic shape transformations, including minimizing surface area for survival against desiccation and enabling transport (negative thermotaxis) from hazardous environments (like heat). We specifically focus on the locomotion of the blob to understand how an amorphous entangled ball of worms can break symmetry to move across a substrate. We hypothesize that the collective blob displays rudimentary differentiation of function across itself, which when combined with entanglement dynamics facilitates directed persistent blob locomotion. To test this, we develop a robophysical model of the worm blobs, which displays emergent locomotion in the collective without sophisticated control or programming of any individual robot. The emergent dynamics of the living functional blob and robophysical model can inform the design of additional classes of adaptive mechanofunctional living materials and emergent robotics.

  • organismal collective
  • entangled active matter
  • emergent mechanics
  • swarming robot
  • collective behavior

Footnotes

  • ↵1To whom correspondence may be addressed. Email: saadb{at}chbe.gatech.edu.
  • Author contributions: Y.O.-A., D.I.G., and M.S.B. designed research; Y.O.-A. conceived the setups and performed animal and robot experiments; Y.O.-A. derived the model and analyzed data; and Y.O.-A., D.I.G., and M.S.B. wrote the paper.

  • The authors declare no competing interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2010542118/-/DCSupplemental.

Data Availability.

All study data are included in this article and/or SI Appendix.

Published under the PNAS license.

View Full Text

References

  1. ↵
    1. J. K. Parrish,
    2. L. Edelstein-Keshet
    , Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284, 99–101 (1999).
    OpenUrlAbstract/FREE Full Text
  2. ↵
    1. M. C. Marchetti et al.
    , Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013).
    OpenUrlCrossRef
  3. ↵
    1. C. Bechinger,
    2. R. D. Leonardo,
    3. C. Reichhardt,
    4. G. Volpe,
    5. G. Volpe
    , Active particles in complex and crowded environments. Rev. Mod. Phys. 88, 045006 (2016).
    OpenUrlCrossRefPubMed
  4. ↵
    1. S. Ramaswamy
    , The mechanics and statistics of active matter. Annu. Rev. Condensed Matter Phys. 1, 323–345 (2010).
    OpenUrlCrossRef
  5. ↵
    1. T. Vicsek,
    2. A. Zafeiris
    , Collective motion. Phys. Rep. 517, 71–140 (2012).
    OpenUrl
  6. ↵
    1. J. Elgeti,
    2. R. G. Winkler,
    3. G. Gompper
    , Physics of microswimmers—single particle motion and collective behavior: A review. Rep. Prog. Phys. 78, 056601 (2015).
    OpenUrlCrossRefPubMed
  7. ↵
    1. M. Tennenbaum,
    2. Z. Liu,
    3. D. Hu,
    4. A. Fernandez-Nieves
    , Mechanics of fire ant aggregations. Nat. Mater. 15, 54–59 (2016).
    OpenUrl
  8. ↵
    1. M. Bross et al.
    , Hydromechanics of fish schooling. Annu. Rev. Physiol. 26, 357 (1967).
    OpenUrl
  9. ↵
    1. M. Ballerini et al.
    , Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proc. Natl. Acad. Sci. U.S.A. 105, 1232–1237 (2008).
    OpenUrlAbstract/FREE Full Text
  10. ↵
    1. A. Cavagna et al.
    , Scale-free correlations in starling flocks. Proc. Natl. Acad. Sci. U.S.A. 107, 11865–11870 (2010).
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. J. K. Parrish,
    2. S. V. Viscido,
    3. D. Grünbaum
    , Self-organized fish schools: An examination of emergent properties. Biol. Bull. 202, 296–305 (2002).
    OpenUrlCrossRefPubMed
  12. ↵
    1. A. Doostmohammadi,
    2. J. Ignés-Mullol,
    3. J. M. Yeomans,
    4. F. Sagués
    , Active nematics. Nat. Commun. 9, 3246 (2018).
    OpenUrl
  13. ↵
    1. C. Anderson,
    2. G. Theraulaz,
    3. J. L. Deneubourg
    , Self-assemblages in insect societies. Insectes Soc. 49, 99–110 (2002).
    OpenUrlCrossRef
  14. ↵
    1. F. J. Vernerey et al.
    , Biological active matter aggregates: Inspiration for smart colloidal materials. Adv. Colloid Interface Sci. 263, 38–51 (2019).
    OpenUrl
  15. ↵
    1. D. L. Hu,
    2. S. Phonekeo,
    3. E. Altshuler,
    4. F. Brochard-Wyart
    , Entangled active matter: From cells to ants. Eur. Phys. J. Spec. Top. 225, 629–649 (2016).
    OpenUrl
  16. ↵
    1. N. J. Mlot,
    2. C. Tovey,
    3. D. L. Hu
    , Dynamics and shape of large fire ant rafts. Commun. Integr. Biol. 5, 590–597 (2012).
    OpenUrlCrossRefPubMed
  17. ↵
    1. N. J. Mlot,
    2. C. A. Tovey,
    3. D. L. Hu
    , Fire ants self-assemble into waterproof rafts to survive floods. Proc. Natl. Acad. Sci. U.S.A. 108, 7669–7673 (2011).
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. T. Sakiyama
    , Ant droplet dynamics evolve via individual decision-making. Sci. Rep. 7, 14877 (2017).
    OpenUrl
  19. ↵
    1. O. Peleg,
    2. J. M. Peters,
    3. M. K. Salcedo,
    4. L. Mahadevan
    , Collective mechanical adaptation of honeybee swarms. Nat. Phys. 14, 1193–1198 (2018).
    OpenUrl
  20. ↵
    1. F. J. Vernerey,
    2. T. Shen,
    3. S. L. Sridhar,
    4. R. J. Wagner
    , How do fire ants control the rheology of their aggregations? A statistical mechanics approach. J. R. Soc. Interface 15, 20180642 (2018).
    OpenUrlCrossRefPubMed
  21. ↵
    1. R. Di Leonardo
    , Controlled collective motions. Nat. Mater. 15, 1057–1058 (2016).
    OpenUrl
  22. ↵
    1. W. Wang,
    2. W. Duan,
    3. S. Ahmed,
    4. A. Sen,
    5. T. E. Mallouk
    , From one to many: Dynamic assembly and collective behavior of self-propelled colloidal motors. Accounts Chem. Res. 48, 1938–1946 (2015).
    OpenUrl
  23. ↵
    1. F. Ginot,
    2. I. Theurkauff,
    3. F. Detcheverry,
    4. C. Ybert,
    5. C. Cottin-Bizonne
    , Aggregation-fragmentation and individual dynamics of active clusters. Nat. Commun. 9, 696 (2018).
    OpenUrlCrossRefPubMed
  24. ↵
    1. J. Yu,
    2. B. Wang,
    3. X. Du,
    4. Q. Wang,
    5. L. Zhang
    , Ultra-extensible ribbon-like magnetic microswarm. Nat. Commun. 9, 3260 (2018).
    OpenUrl
  25. ↵
    1. Q. Chen,
    2. S. C. Bae,
    3. S. Granick
    , Directed self-assembly of a colloidal kagome lattice. Nature 469, 381–384 (2011).
    OpenUrlCrossRefPubMed
  26. ↵
    1. M. Brambilla,
    2. E. Ferrante,
    3. M. Birattari,
    4. M. Dorigo
    , Swarm robotics: A review from the swarm engineering perspective. Swarm Intell. 7, 1–41 (2013).
    OpenUrl
  27. ↵
    1. B. Varghese,
    2. G. McKee
    , A mathematical model, implementation and study of a swarm system. Robot. Autonom. Syst. 58, 287–294 (2010).
    OpenUrl
  28. ↵
    1. M. N. Ab Wahab,
    2. S. Nefti-Meziani,
    3. A. Atyabi
    , A comprehensive review of swarm optimization algorithms. PloS One 10, e0122827 (2015).
    OpenUrl
  29. ↵
    1. A. Martinoli,
    2. K. Easton,
    3. W. Agassounon
    , Modeling swarm robotic systems: A case study in collaborative distributed manipulation. Int. J. Robot Res. 23, 415–436 (2004).
    OpenUrlCrossRef
  30. ↵
    1. A. Prorok,
    2. N. Correll,
    3. A. Martinoli
    , Multi-level spatial modeling for stochastic distributed robotic systems. Int. J. Robot Res. 30, 574–589 (2011).
    OpenUrl
  31. ↵
    1. M. Rubenstein,
    2. A. Cornejo,
    3. R. Nagpal
    , Programmable self-assembly in a thousand-robot swarm. Science 345, 795–799 (2014).
    OpenUrlAbstract/FREE Full Text
  32. ↵
    1. A. Kushleyev,
    2. D. Mellinger,
    3. V. Kumar
    , Toward a swarm of agile micro quadrotors. Aut. Robots 35, 287–300 (2013).
    OpenUrl
  33. ↵
    1. T. Sawetzki,
    2. S. Rahmouni,
    3. C. Bechingera,
    4. D. W. Marr
    , In situ assembly of linked geometrically coupled microdevices. Proc. Natl. Acad. Sci. U.S.A. 105, 20141–20145 (2008).
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. M. A. Hsieh,
    2. V. Kumar,
    3. L. Chaimowicz
    , Decentralized controllers for shape generation with robotic swarms. Robotica 26, 691–701 (2008).
    OpenUrl
  35. ↵
    1. D. Saldana et al.
    , “A decentralized algorithm for assembling structures with modular robots” in Proceedings of the 2017 IEEE International Conference on Intelligent Robots and Systems, (Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ, 2017), vol. 2017, pp. 2736–2743.
    OpenUrl
  36. ↵
    1. B. Gabrich,
    2. D. Saldana,
    3. V. Kumar,
    4. M. Yim
    , “A flying gripper based on cuboid modular robots” in Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA, Piscataway, NJ, 2018), pp. 7024–7030.
  37. ↵
    1. S. Li et al.
    , Particle robotics based on statistical mechanics of loosely coupled components. Nature 567, 361–365 (2019).
    OpenUrlCrossRefPubMed
  38. ↵
    1. W. Savoie et al.
    , A robot made of robots: Emergent transport and control of a smarticle ensemble. Sci. Robot 4, 4316 (2019).
    OpenUrl
  39. ↵
    1. J. Aguilar et al.
    , A review on locomotion robophysics: The study of movement at the intersection of robotics, soft matter and dynamical systems. Rep. Prog. Phys. 79, 110001 (2016).
    OpenUrlCrossRefPubMed
  40. ↵
    1. S. M. Walsh,
    2. M. S. Strano
    1. Y. Ozkan-Aydin,
    2. J. M. Rieser,
    3. C. M. Hubicki,
    4. W. Savoie,
    5. D. I. Goldman
    , “Physics approaches to natural locomotion: Every robot is an experiment” in Robotic Systems and Autonomous Platforms, S. M. Walsh, M. S. Strano, Eds. (Elsevier, 2019), pp. 109–127.
  41. ↵
    1. A. Deblais,
    2. S. Woutersen,
    3. D. Bonn
    , Rheology of entangled active polymer-like T. tubifex worms. Phys. Rev. Lett. 124, 188002 (2020).
    OpenUrl
  42. ↵
    1. C. D. Drewes,
    2. C. R. Fourtner
    , Hindsight and rapid escape in a freshwater oligochaete. Biol. Bull. 177, 363–371 (1989).
    OpenUrlCrossRef
  43. ↵
    1. T. Timm,
    2. P. J. Martin
    , “Clitellata: Oligochaeta” in Thorp and Covich’s Freshwater Invertebrates (Fourth Edition), J. H. Thorp, D. C. Rogers, Eds. (Academic Press, 2015), pp. 529–549.
  44. ↵
    1. R. O. Brinkhurst and
    2. B.G.M. Jamieson
    , Aquatic Oligochaeta of the World, D. G. Cook, D. V. Anderson, J. Van der Land, Eds. (Oliver and Boyd, Edinburgh, University of Toronto Press, Toronto, 1971).
  45. ↵
    1. C. D. Drewes,
    2. R. O. Brinkhurst
    , Giant nerve fibers and rapid escape reflexes in newly hatched aquatic oligochaetes, Lumbriculus variegatus (family Lumbriculidae). Invertebr. Reprod. Dev. 17, 91–95 (1990).
    OpenUrl
  46. ↵
    1. A. Deblais,
    2. A. C. Maggs,
    3. D. Bonn,
    4. S. Woutersen
    , Phase separation by entanglement of active polymerlike worms. Phys. Rev. Lett. 124, 208006 (2020).
    OpenUrl
  47. ↵
    1. C. Fillafer,
    2. M. F. Schneider
    , On the temperature behavior of pulse propagation and relaxation in worms, nerves and gels. PloS One 8, e66773 (2013).
    OpenUrlCrossRefPubMed
  48. ↵
    1. M. E. Cates,
    2. J. Tailleur
    , Motility-induced phase separation. Annu. Rev. Condensed Matter Phys. 6, 219–244 (2015).
    OpenUrl
  49. ↵
    1. E. R. Trueman
    , The Locomotion of Soft-Bodied Animals (A Series of Students Texts in Contemporary Biology, American Elsevier Publishing Company, New York, NY, 1975).
  50. ↵
    1. J. H. Crowe,
    2. K. A. C. Madin
    , Anhydrobiosis in nematodes: Evaporative water loss and survival. J. Exp. Zool. 193, 323–333 (1975).
    OpenUrlCrossRef
  51. ↵
    1. L. M. Higa,
    2. C. Z. Womersley
    , New insights into the anhydrobiotic phenomenon: The effects of trehalose content and differential rates of evaporative water loss on the survival Ofaphelenchus avenae. J. Exp. Zool. 267, 120–129 (1993).
    OpenUrlCrossRef
  52. ↵
    1. T. Sugi,
    2. H. Ito,
    3. M. Nishimura,
    4. K. H. Nagai
    , C. elegans collectively forms dynamical networks. Nat. Commun. 10, 683 (2019).
    OpenUrl
  53. ↵
    1. S. S. Ding,
    2. L. J. Schumacher,
    3. A. E. Javer,
    4. R. G. Endres,
    5. A. E. Brown
    , Shared behavioral mechanisms underlie C. elegans aggregation and swarming. eLife 8, e43318 (2019).
    OpenUrl
  54. ↵
    1. E. Demir,
    2. Y. I. Yaman,
    3. M. Basaran,
    4. A. Kocabas
    , Dynamics of pattern formation and emergence of swarming in C. elegans. eLife 9, e52781 (2020).
    OpenUrl
  55. ↵
    1. C. D. Drewes,
    2. C. R. Fourtner
    , Hindsight and rapid escape in a freshwater oligochaete. Biol. Bull. 177, 363–371 (1989).
    OpenUrlCrossRef
  56. ↵
    1. C. Drewes,
    2. K. Cain,
    3. C. Drewes,
    4. K. Cain
    , As the worm turns: Locomotion in a freshwater oligochaete worm. Am. Biol. Teach. 61, 438–442 (2012).
    OpenUrl
  57. ↵
    1. A. Mathis et al.
    , Deeplabcut: Markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).
    OpenUrlCrossRefPubMed
  58. ↵
    1. M. R. Hanlin Wang
    , Shape formation in homogeneous swarms using local task swapping. IEEE Trans. Robot. 36, 597–612 (2020).
    OpenUrl
  59. ↵
    1. W. Li,
    2. M. Gauci,
    3. R. Gross
    , Turing learning: A metric-free approach to inferring behavior and its application to swarms. Swarm Intell. 10, 211–243 (2016).
    OpenUrl
  60. ↵
    1. L. Garattoni,
    2. M. Birattari
    , Autonomous task sequencing in a robot swarm. Sci. Robot. 3, eaat0430 (2018).
    OpenUrl
  61. ↵
    1. J. McLurkin,
    2. E. D. Demaine
    , “A distributed boundary detection algorithm for multi-robot systems” in in Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS, Piscataway, NJ, 2009), vol. 2009, pp. 4791–4798.
    OpenUrl
  62. ↵
    1. S. Jones,
    2. A. F. Winfield,
    3. S. Hauert,
    4. M. Studley
    , Onboard evolution of understandable swarm behaviors. Adv. Int. Syst. 1, 1900031 (2019).
    OpenUrl
  63. ↵
    1. F. Arvin et al.
    , Mona: An affordable open-source mobile robot for education and research. J. Int. Robot. Syst. 94, 761–775 (2019).
    OpenUrl
  64. ↵
    1. M. Santos,
    2. Y. DIaz-Mercado,
    3. M. Egerstedt
    , Coverage control for multirobot teams with heterogeneous sensing capabilities. IEEE Robot. Automation Lett. 3, 919–925 (2018).
    OpenUrl
  65. ↵
    1. J. T. Bonner
    , The Social Amoebae: The Biology of Cellular Slime Molds (Princeton University Press, 2009).
  66. ↵
    1. J. Bereiter-Hahn
    , Mechanics of crawling cells. Med. Eng. Phys. 27, 743–753 (2005).
    OpenUrlCrossRefPubMed
  67. ↵
    1. R. Ananthakrishnan,
    2. A. Ehrlicher
    , The forces behind cell movement. Int. J. Biol. Sci. 3, 303–317 (2007).
    OpenUrlCrossRefPubMed
  68. ↵
    1. B. Carlson,
    2. S. H. Soderling
    , Mechanisms of cellular protrusions branch out. Dev. Cell 17, 307–309 (2009).
    OpenUrlCrossRefPubMed
  69. ↵
    1. A. D. Bershadsky,
    2. M. M. Kozlov
    , Crawling cell locomotion revisited. Proc. Natl. Acad. Sci. U.S.A. 108, 20275–20276 (2011).
    OpenUrlFREE Full Text

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

Subscribers, for more details, please visit our Subscriptions FAQ.

Please click here to log into the PNAS submission website.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Collective dynamics in entangled worm and robot blobs
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Collective dynamics in entangled worm and robot blobs
Yasemin Ozkan-Aydin, Daniel I. Goldman, M. Saad Bhamla
Proceedings of the National Academy of Sciences Feb 2021, 118 (6) e2010542118; DOI: 10.1073/pnas.2010542118

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Collective dynamics in entangled worm and robot blobs
Yasemin Ozkan-Aydin, Daniel I. Goldman, M. Saad Bhamla
Proceedings of the National Academy of Sciences Feb 2021, 118 (6) e2010542118; DOI: 10.1073/pnas.2010542118
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 118 (6)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Physical Sciences
  • Engineering
  • Biological Sciences
  • Physiology

Jump to section

  • Article
    • Abstract
    • Results and Discussion
    • Concluding Remarks
    • Materials and Methods
    • Data Availability.
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Surgeons hands during surgery
Inner Workings: Advances in infectious disease treatment promise to expand the pool of donor organs
Despite myriad challenges, clinicians see room for progress.
Image credit: Shutterstock/David Tadevosian.
Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Double helix
Journal Club: Noncoding DNA shown to underlie function, cause limb malformations
Using CRISPR, researchers showed that a region some used to label “junk DNA” has a major role in a rare genetic disorder.
Image credit: Nathan Devery.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Multi-color molecular model
Enzymatic breakdown of PET plastic
A study demonstrates how two enzymes—MHETase and PETase—work synergistically to depolymerize the plastic pollutant PET.
Image credit: Aaron McGeehan (artist).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490