Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Secretagogin marks amygdaloid PKCδ interneurons and modulates NMDA receptor availability

View ORCID ProfileZsófia Hevesi, Dóra Zelena, Roman A. Romanov, János Hanics, View ORCID ProfileAttila Ignácz, Alice Zambon, View ORCID ProfileDaniela D. Pollak, Dávid Lendvai, View ORCID ProfileKatalin Schlett, View ORCID ProfileMiklós Palkovits, Tibor Harkany, Tomas G. M. Hökfelt, and Alán Alpár
PNAS February 16, 2021 118 (7) e1921123118; https://doi.org/10.1073/pnas.1921123118
Zsófia Hevesi
aSE-NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences, H-1094 Budapest, Hungary;
bDepartment of Anatomy, Semmelweis University, H-1094 Budapest, Hungary;
cDepartment of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Zsófia Hevesi
Dóra Zelena
dBehavioral Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary;
eCentre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roman A. Romanov
cDepartment of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
János Hanics
aSE-NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences, H-1094 Budapest, Hungary;
bDepartment of Anatomy, Semmelweis University, H-1094 Budapest, Hungary;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Attila Ignácz
fNeuronal Cell Biology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Attila Ignácz
Alice Zambon
gDepartment of Neurophysiology and Neuropharmacology, Medical University of Vienna, A-1090 Vienna, Austria;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniela D. Pollak
gDepartment of Neurophysiology and Neuropharmacology, Medical University of Vienna, A-1090 Vienna, Austria;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Daniela D. Pollak
Dávid Lendvai
bDepartment of Anatomy, Semmelweis University, H-1094 Budapest, Hungary;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Katalin Schlett
fNeuronal Cell Biology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Katalin Schlett
Miklós Palkovits
hHuman Brain Tissue Bank and Laboratory, Semmelweis University, H-1094 Budapest, Hungary;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Miklós Palkovits
Tibor Harkany
cDepartment of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria;
iDepartment of Neuroscience, Biomedicum D0776, Karolinska Institutet, SE-17165 Solna, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tomas G. M. Hökfelt
iDepartment of Neuroscience, Biomedicum D0776, Karolinska Institutet, SE-17165 Solna, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: Tomas.Hokfelt@ki.se alpar.alan@med.semmelweis-univ.hu
Alán Alpár
aSE-NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences, H-1094 Budapest, Hungary;
bDepartment of Anatomy, Semmelweis University, H-1094 Budapest, Hungary;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: Tomas.Hokfelt@ki.se alpar.alan@med.semmelweis-univ.hu
  1. Contributed by Tomas G. M. Hökfelt, December 17, 2020 (sent for review December 2, 2019; reviewed by Alon Amir, Marco Capogna, and Joseph E. LeDoux)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

Unconscious reactions to threat orchestrated by subcortical brain structures are critical to save the individual at peril. The innate behavioral responses can be modulated by associative learning processes in which the amygdaloid complex gates active motor commands to avoid danger. At the cellular level, glutamatergic neurotransmission through postsynaptic NMDA receptors drives threat-induced changes in synaptic function. Here, we show that the availability of NMDA receptors in the postsynapse is modulated by secretagogin, a Ca2+ sensor protein. Chemogenetic inactivation of secretagogin-expressing neurons, or ablation of secretagogin itself, provides causality for the role of Ca2+-dependent feedback regulation at the cellular level.

Abstract

The perception of and response to danger is critical for an individual’s survival and is encoded by subcortical neurocircuits. The amygdaloid complex is the primary neuronal site that initiates bodily reactions upon external threat with local-circuit interneurons scaling output to effector pathways. Here, we categorize central amygdala neurons that express secretagogin (Scgn), a Ca2+-sensor protein, as a subset of protein kinase Cδ (PKCδ)+ interneurons, likely “off cells.” Chemogenetic inactivation of Scgn+/PKCδ+ cells augmented conditioned response to perceived danger in vivo. While Ca2+-sensor proteins are typically implicated in shaping neurotransmitter release presynaptically, Scgn instead localized to postsynaptic compartments. Characterizing its role in the postsynapse, we found that Scgn regulates the cell-surface availability of NMDA receptor 2B subunits (GluN2B) with its genetic deletion leading to reduced cell membrane delivery of GluN2B, at least in vitro. Conclusively, we describe a select cell population, which gates danger avoidance behavior with secretagogin being both a selective marker and regulatory protein in their excitatory postsynaptic machinery.

  • associative learning
  • calcium-binding protein
  • limbic system
  • fear conditioning

Footnotes

  • ↵1To whom correspondence may be addressed. Email: Tomas.Hokfelt{at}ki.se or alpar.alan{at}med.semmelweis-univ.hu.
  • Author contributions: D.Z., D.D.P., K.S., M.P., T.H., T.G.M.H., and A.A. designed research; Z.H., D.Z., R.A.R., J.H., A.I., A.Z., D.D.P., D.L., and A.A. performed research; M.P. and T.H. contributed new reagents/analytic tools; Z.H., R.A.R., J.H., A.I., A.Z., D.D.P., D.L., K.S., T.G.M.H., and A.A. analyzed data; and Z.H., T.H., T.G.M.H., and A.A. wrote the paper.

  • Reviewers: A.A., Rutgers University; M.C., University of Aarhus; and J.E.L., New York University.

  • The authors declare no competing interest.

  • This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1921123118/-/DCSupplemental.

Data Availability.

All study data are included in the article and/or SI Appendix.

Published under the PNAS license.

View Full Text

References

  1. ↵
    1. I. Ehrlich et al
    ., Amygdala inhibitory circuits and the control of fear memory. Neuron 62, 757–771 (2009).
    OpenUrlCrossRefPubMed
  2. ↵
    1. J. E. LeDoux
    , Coming to terms with fear. Proc. Natl. Acad. Sci. U.S.A. 111, 2871–2878 (2014).
    OpenUrlAbstract/FREE Full Text
  3. ↵
    1. J. E. Krettek,
    2. J. L. Price
    , A description of the amygdaloid complex in the rat and cat with observations on intra-amygdaloid axonal connections. J. Comp. Neurol. 178, 255–280 (1978).
    OpenUrlCrossRefPubMed
  4. ↵
    1. C. Herry,
    2. J. P. Johansen
    , Encoding of fear learning and memory in distributed neuronal circuits. Nat. Neurosci. 17, 1644–1654 (2014).
    OpenUrlCrossRefPubMed
  5. ↵
    1. P. Veinante,
    2. M. J. Freund-Mercier
    , Intrinsic and extrinsic connections of the rat central extended amygdala: An in vivo electrophysiological study of the central amygdaloid nucleus. Brain Res. 794, 188–198 (1998).
    OpenUrlCrossRefPubMed
  6. ↵
    1. R. M. Sears,
    2. H. C. Schiff,
    3. J. E. LeDoux
    , Molecular mechanisms of threat learning in the lateral nucleus of the amygdala. Prog. Mol. Biol. Transl. Sci. 122, 263–304 (2014).
    OpenUrlCrossRefPubMed
  7. ↵
    1. O. P. Keifer Jr,
    2. R. C. Hurt,
    3. K. J. Ressler,
    4. P. J. Marvar
    , The physiology of fear: Reconceptualizing the role of the central amygdala in fear learning. Physiology (Bethesda) 30, 389–401 (2015).
    OpenUrlCrossRefPubMed
  8. ↵
    1. R. M. Tillman et al
    ., Intrinsic functional connectivity of the central extended amygdala. Hum. Brain Mapp. 39, 1291–1312 (2018).
    OpenUrlCrossRefPubMed
  9. ↵
    1. G. M. Gafford,
    2. K. J. Ressler
    , Mouse models of fear-related disorders: Cell-type-specific manipulations in amygdala. Neuroscience 321, 108–120 (2016).
    OpenUrl
  10. ↵
    1. W. Haubensak et al
    ., Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468, 270–276 (2010).
    OpenUrlCrossRefPubMed
  11. ↵
    1. K. Yu et al
    ., The central amygdala controls learning in the lateral amygdala. Nat. Neurosci. 20, 1680–1685 (2017).
    OpenUrlCrossRefPubMed
  12. ↵
    1. A. E. Wilensky,
    2. G. E. Schafe,
    3. M. P. Kristensen,
    4. J. E. LeDoux
    , Rethinking the fear circuit: The central nucleus of the amygdala is required for the acquisition, consolidation, and expression of pavlovian fear conditioning. J. Neurosci. 26, 12387–12396 (2006).
    OpenUrlAbstract/FREE Full Text
  13. ↵
    1. R. D. Samson,
    2. S. Duvarci,
    3. D. Paré
    , Synaptic plasticity in the central nucleus of the amygdala. Rev. Neurosci. 16, 287–302 (2005).
    OpenUrlPubMed
  14. ↵
    1. G. D. Petrovich,
    2. L. W. Swanson
    , Projections from the lateral part of the central amygdalar nucleus to the postulated fear conditioning circuit. Brain Res. 763, 247–254 (1997).
    OpenUrlCrossRefPubMed
  15. ↵
    1. S. Ciocchi et al
    ., Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468, 277–282 (2010).
    OpenUrlCrossRefPubMed
  16. ↵
    1. R. O. Tasan et al
    ., The role of neuropeptide Y in fear conditioning and extinction. Neuropeptides 55, 111–126 (2016).
    OpenUrlCrossRef
  17. ↵
    1. J. P. Fadok et al
    ., A competitive inhibitory circuit for selection of active and passive fear responses. Nature 542, 96–100 (2017).
    OpenUrlCrossRefPubMed
  18. ↵
    1. P. H. Janak,
    2. K. M. Tye
    , From circuits to behaviour in the amygdala. Nature 517, 284–292 (2015).
    OpenUrlCrossRefPubMed
  19. ↵
    1. A. Alpár,
    2. J. Attems,
    3. J. Mulder,
    4. T. Hökfelt,
    5. T. Harkany
    , The renaissance of Ca2+-binding proteins in the nervous system: Secretagogin takes center stage. Cell. Signal. 24, 378–387 (2012).
    OpenUrlCrossRefPubMed
  20. ↵
    1. R. A. Romanov et al
    ., A secretagogin locus of the mammalian hypothalamus controls stress hormone release. EMBO J. 34, 36–54 (2015).
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. J. Mulder et al
    ., Secretagogin is a Ca2+-binding protein identifying prospective extended amygdala neurons in the developing mammalian telencephalon. Eur. J. Neurosci. 31, 2166–2177 (2010).
    OpenUrlCrossRefPubMed
  22. ↵
    1. B. M. De Oca,
    2. J. P. DeCola,
    3. S. Maren,
    4. M. S. Fanselow
    , Distinct regions of the periaqueductal gray are involved in the acquisition and expression of defensive responses. J. Neurosci. 18, 3426–3432 (1998).
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. A. J. McDonald
    , Neurons of the lateral and basolateral amygdaloid nuclei: A golgi study in the rat. J. Comp. Neurol. 212, 293–312 (1982).
    OpenUrlCrossRefPubMed
  24. ↵
    1. N. H. Kalin,
    2. L. K. Takahashi,
    3. F. L. Chen
    , Restraint stress increases corticotropin-releasing hormone mRNA content in the amygdala and paraventricular nucleus. Brain Res. 656, 182–186 (1994).
    OpenUrlCrossRefPubMed
  25. ↵
    1. R. Zhang et al
    ., Loss of hypothalamic corticotropin-releasing hormone markedly reduces anxiety behaviors in mice. Mol. Psychiatry 22, 733–744 (2016).
    OpenUrl
  26. ↵
    1. T. Alon et al
    ., Transgenic mice expressing green fluorescent protein under the control of the corticotropin-releasing hormone promoter. Endocrinology 150, 5626–5632 (2009).
    OpenUrlCrossRefPubMed
  27. ↵
    1. P. N. De Francesco et al
    ., Neuroanatomical and functional characterization of CRF neurons of the amygdala using a novel transgenic mouse model. Neuroscience 289, 153–165 (2015).
    OpenUrl
  28. ↵
    1. G. M. Alexander et al
    ., Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63, 27–39 (2009).
    OpenUrlCrossRefPubMed
  29. ↵
    1. B. N. Armbruster,
    2. X. Li,
    3. M. H. Pausch,
    4. S. Herlitze,
    5. B. L. Roth
    , Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl. Acad. Sci. U.S.A. 104, 5163–5168 (2007).
    OpenUrlAbstract/FREE Full Text
  30. ↵
    1. I. Shemer et al
    ., Non-fibrillar beta-amyloid abates spike-timing-dependent synaptic potentiation at excitatory synapses in layer 2/3 of the neocortex by targeting postsynaptic AMPA receptors. Eur. J. Neurosci. 23, 2035–2047 (2006).
    OpenUrlCrossRefPubMed
  31. ↵
    1. A. Alpár et al
    ., Hypothalamic CNTF volume transmission shapes cortical noradrenergic excitability upon acute stress. EMBO J. 37, e100087 (2018).
    OpenUrlAbstract/FREE Full Text
  32. ↵
    1. W. Gartner et al
    ., New functional aspects of the neuroendocrine marker secretagogin based on the characterization of its rat homolog. Am. J. Physiol. Endocrinol. Metab. 293, E347–E354 (2007).
    OpenUrlCrossRefPubMed
  33. ↵
    1. J. Hanics et al
    ., Secretagogin-dependent matrix metalloprotease-2 release from neurons regulates neuroblast migration. Proc. Natl. Acad. Sci. U.S.A. 114, E2006–E2015 (2017).
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. L. Joseph,
    2. J. Augustine,
    3. M. Omana
    , Multilocular cystadenoma of the liver with mural nodules. Indian J. Pathol. Microbiol. 36, 308–310 (1993).
    OpenUrlPubMed
  35. ↵
    1. S. Sankaranarayanan,
    2. D. De Angelis,
    3. J. E. Rothman,
    4. T. A. Ryan
    , The use of pHluorins for optical measurements of presynaptic activity. Biophys. J. 79, 2199–2208 (2000).
    OpenUrlCrossRefPubMed
  36. ↵
    1. G. Lavezzari,
    2. J. McCallum,
    3. R. Lee,
    4. K. W. Roche
    , Differential binding of the AP-2 adaptor complex and PSD-95 to the C-terminus of the NMDA receptor subunit NR2B regulates surface expression. Neuropharmacology 45, 729–737 (2003).
    OpenUrlCrossRefPubMed
  37. ↵
    1. J. E. LeDoux
    , Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000).
    OpenUrlCrossRefPubMed
  38. ↵
    1. J. E. LeDoux
    , Semantics, surplus meaning, and the science of fear. Trends Cogn. Sci. 21, 303–306 (2017).
    OpenUrlCrossRef
  39. ↵
    1. H. C. Pape,
    2. D. Pare
    , Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol. Rev. 90, 419–463 (2010).
    OpenUrlCrossRefPubMed
  40. ↵
    1. A. J. McDonald
    , Cytoarchitecture of the central amygdaloid nucleus of the rat. J. Comp. Neurol. 208, 401–418 (1982).
    OpenUrlCrossRefPubMed
  41. ↵
    1. T. F. Freund,
    2. G. Buzsáki
    , Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).
    OpenUrlCrossRefPubMed
  42. ↵
    1. J. A. Harris,
    2. R. F. Westbrook
    , Effects of benzodiazepine microinjection into the amygdala or periaqueductal gray on the expression of conditioned fear and hypoalgesia in rats. Behav. Neurosci. 109, 295–304 (1995).
    OpenUrlCrossRefPubMed
  43. ↵
    1. C. R. Pinard,
    2. J. F. Muller,
    3. F. Mascagni,
    4. A. J. McDonald
    , Dopaminergic innervation of interneurons in the rat basolateral amygdala. Neuroscience 157, 850–863 (2008).
    OpenUrlPubMed
  44. ↵
    1. E. Asan
    , The catecholaminergic innervation of the rat amygdala. Adv. Anat. Embryol. Cell Biol. 142, 1–118 (1998).
    OpenUrlCrossRefPubMed
  45. ↵
    1. H. Li et al
    ., Experience-dependent modification of a central amygdala fear circuit. Nat. Neurosci. 16, 332–339 (2013).
    OpenUrlCrossRefPubMed
  46. ↵
    1. M. S. Fanselow,
    2. J. E. LeDoux
    , Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron 23, 229–232 (1999).
    OpenUrlCrossRefPubMed
  47. ↵
    1. M. A. Penzo,
    2. V. Robert,
    3. B. Li
    , Fear conditioning potentiates synaptic transmission onto long-range projection neurons in the lateral subdivision of central amygdala. J. Neurosci. 34, 2432–2437 (2014).
    OpenUrlAbstract/FREE Full Text
  48. ↵
    1. S. G. Cull-Candy,
    2. D. N. Leszkiewicz
    , Role of distinct NMDA receptor subtypes at central synapses. Sci. STKE 2004, re16 (2004).
    OpenUrlAbstract/FREE Full Text
  49. ↵
    1. R. A. Al-Hallaq,
    2. T. P. Conrads,
    3. T. D. Veenstra,
    4. R. J. Wenthold
    , NMDA di-heteromeric receptor populations and associated proteins in rat hippocampus. J. Neurosci. 27, 8334–8343 (2007).
    OpenUrlAbstract/FREE Full Text
  50. ↵
    1. L. Bard,
    2. L. Groc
    , Glutamate receptor dynamics and protein interaction: Lessons from the NMDA receptor. Mol. Cell. Neurosci. 48, 298–307 (2011).
    OpenUrlCrossRefPubMed
  51. ↵
    1. L. Groc et al
    ., NMDA receptor surface mobility depends on NR2A-2B subunits. Proc. Natl. Acad. Sci. U.S.A. 103, 18769–18774 (2006).
    OpenUrlAbstract/FREE Full Text
  52. ↵
    1. D. Calvigioni et al
    ., Functional differentiation of cholecystokinin-containing interneurons destined for the cerebral cortex. Cereb. Cortex 27, 2453–2468 (2017).
    OpenUrlCrossRefPubMed
  53. ↵
    1. W. C. Skarnes et al
    ., A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474, 337–342 (2011).
    OpenUrlCrossRefPubMed
  54. ↵
    1. D. Lendvai et al
    ., Neurochemical mapping of the human hippocampus reveals perisynaptic matrix around functional synapses in Alzheimer’s disease. Acta Neuropathol. 125, 215–229 (2013).
    OpenUrlCrossRefPubMed
  55. ↵
    1. E. Renner,
    2. N. Puskás,
    3. A. Dobolyi,
    4. M. Palkovits
    , Glucagon-like peptide-1 of brainstem origin activates dorsomedial hypothalamic neurons in satiated rats. Peptides 35, 14–22 (2012).
    OpenUrlCrossRefPubMed
  56. ↵
    1. I. M. Gut et al
    ., Novel application of stem cell-derived neurons to evaluate the time- and dose-dependent progression of excitotoxic injury. PLoS One 8, e64423 (2013).
    OpenUrlCrossRefPubMed
  57. ↵
    1. R. Hua,
    2. S. Yu,
    3. M. Liu,
    4. H. Li
    , A PCR-based method for RNA probes and applications in neuroscience. Front. Neurosci. 12, 266 (2018).
    OpenUrlCrossRefPubMed
  58. ↵
    1. T. Bullmann et al
    ., Tau phosphorylation-associated spine regression does not impair hippocampal-dependent memory in hibernating golden hamsters. Hippocampus 26, 301–318 (2016).
    OpenUrl
  59. ↵
    1. A. Alpár et al
    ., Endocannabinoids modulate cortical development by configuring Slit2/Robo1 signalling. Nat. Commun. 5, 4421 (2014).
    OpenUrlCrossRefPubMed
  60. ↵
    1. S. Zhao et al
    ., Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat. Methods 8, 745–752 (2011).
    OpenUrlCrossRefPubMed
  61. ↵
    1. Y. Fu,
    2. P. Shinnick-Gallagher
    , Two intra-amygdaloid pathways to the central amygdala exhibit different mechanisms of long-term potentiation. J. Neurophysiol. 93, 3012–3015 (2005).
    OpenUrlCrossRefPubMed
  62. ↵
    1. M. M. Bradford
    , A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).
    OpenUrlCrossRefPubMed
  63. ↵
    1. P. K. Kamat,
    2. A. Kalani,
    3. N. Tyagi
    , Method and validation of synaptosomal preparation for isolation of synaptic membrane proteins from rat brain. MethodsX 1, 102–107 (2014).
    OpenUrl
  64. ↵
    1. A. Dosemeci,
    2. J. H. Tao-Cheng,
    3. L. Vinade,
    4. H. Jaffe
    , Preparation of postsynaptic density fraction from hippocampal slices and proteomic analysis. Biochem. Biophys. Res. Commun. 339, 687–694 (2006).
    OpenUrlCrossRefPubMed

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

Subscribers, for more details, please visit our Subscriptions FAQ.

Please click here to log into the PNAS submission website.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Secretagogin marks amygdaloid PKCδ interneurons and modulates NMDA receptor availability
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Secretagogin marks amygdaloid PKCδ interneurons and modulates NMDA receptor availability
Zsófia Hevesi, Dóra Zelena, Roman A. Romanov, János Hanics, Attila Ignácz, Alice Zambon, Daniela D. Pollak, Dávid Lendvai, Katalin Schlett, Miklós Palkovits, Tibor Harkany, Tomas G. M. Hökfelt, Alán Alpár
Proceedings of the National Academy of Sciences Feb 2021, 118 (7) e1921123118; DOI: 10.1073/pnas.1921123118

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Secretagogin marks amygdaloid PKCδ interneurons and modulates NMDA receptor availability
Zsófia Hevesi, Dóra Zelena, Roman A. Romanov, János Hanics, Attila Ignácz, Alice Zambon, Daniela D. Pollak, Dávid Lendvai, Katalin Schlett, Miklós Palkovits, Tibor Harkany, Tomas G. M. Hökfelt, Alán Alpár
Proceedings of the National Academy of Sciences Feb 2021, 118 (7) e1921123118; DOI: 10.1073/pnas.1921123118
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 118 (7)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Biological Sciences
  • Neuroscience

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Materials and Methods
    • Data Availability.
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Surgeons hands during surgery
Inner Workings: Advances in infectious disease treatment promise to expand the pool of donor organs
Despite myriad challenges, clinicians see room for progress.
Image credit: Shutterstock/David Tadevosian.
Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Double helix
Journal Club: Noncoding DNA shown to underlie function, cause limb malformations
Using CRISPR, researchers showed that a region some used to label “junk DNA” has a major role in a rare genetic disorder.
Image credit: Nathan Devery.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Multi-color molecular model
Enzymatic breakdown of PET plastic
A study demonstrates how two enzymes—MHETase and PETase—work synergistically to depolymerize the plastic pollutant PET.
Image credit: Aaron McGeehan (artist).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490