Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Nonreciprocity of spin waves in the conical helix state

N. Ogawa, L. Köhler, View ORCID ProfileM. Garst, S. Toyoda, S. Seki, and View ORCID ProfileY. Tokura
PNAS February 23, 2021 118 (8) e2022927118; https://doi.org/10.1073/pnas.2022927118
N. Ogawa
aRIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan;
bDepartment of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan;
cPRESTO, Japan Science and Technology Agency (JST), 332-0012 Kawaguchi, Japan;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: naoki.ogawa@riken.jp markus.garst@kit.edu
L. Köhler
dInstitute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76049 Karlsruhe, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Garst
dInstitute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76049 Karlsruhe, Germany;
eInstitute for Quantum Materials and Technology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Garst
  • For correspondence: naoki.ogawa@riken.jp markus.garst@kit.edu
S. Toyoda
aRIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Seki
bDepartment of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan;
cPRESTO, Japan Science and Technology Agency (JST), 332-0012 Kawaguchi, Japan;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y. Tokura
aRIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan;
bDepartment of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan;
fTokyo College, University of Tokyo, Tokyo 113-8656, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Tokura
  1. Edited by Angel Rubio, Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany, and approved January 15, 2021 (received for review November 2, 2020)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

While spin waves in conventional ferromagnets are well understood, those in more complicated magnets hosting spatially textured magnetization, such as helical/conical and skyrmion/hedgehog configurations, are less explored. We investigate experimentally and theoretically the spin waves of the conical spin helix in a chiral magnet with the help of Brillouin light scattering. We discovered that the dynamics of the conical spin helix is characterized by a distinct nonreciprocity with spin waves preferentially propagating in a specific direction controlled by the orientation of the magnetic field. Our work therefore demonstrates that all the spin phases of bulk chiral magnets allow, in principle, the realization of a switchable spin wave diode functionality.

Abstract

Nonreciprocity emerges in nature and in artificial objects from various physical origins, being widely utilized in contemporary technologies as exemplified by diode elements in electronics. While most of the nonreciprocal phenomena are realized by employing interfaces where the inversion symmetry is trivially lifted, nonreciprocal transport of photons, electrons, magnons, and possibly phonons also emerge in bulk crystals with broken space inversion and time reversal symmetries. Among them, directional propagation of bulk magnons (i.e., quanta of spin wave excitation) is attracting much attention nowadays for its potentially large nonreciprocity suitable for spintronic and spin-caloritronic applications. Here, we demonstrate nonreciprocal propagation of spin waves for the conical spin helix state in Cu2OSeO3 due to a combination of dipole and Dzyaloshinskii–Moriya interactions. The observed nonreciprocal spin dispersion smoothly connects to the hitherto known magnetochiral nonreciprocity in the field-induced collinear spin state; thus, all the spin phases show diode characteristics in this chiral insulator.

  • spin wave
  • nonreciprocity
  • conical spin helix

Footnotes

  • ↵1To whom correspondence may be addressed. Email: naoki.ogawa{at}riken.jp or markus.garst{at}kit.edu.
  • Author contributions: N.O., S.T., S.S., and Y.T. designed research; N.O., M.G., S.T., and S.S. performed research; L.K. and M.G. contributed new reagents/analytic tools; N.O., L.K., and M.G. analyzed data; and N.O., L.K., M.G., S.T., S.S., and Y.T. wrote the paper.

  • The authors declare no competing interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2022927118/-/DCSupplemental.

Data Availability

All study data are included in the article and/or SI Appendix.

Published under the PNAS license.

View Full Text

References

  1. ↵
    1. L. Onsager
    , Reciprocal relations in irreversible processes. I. Phys. Rev. 34, 405 (1931).
    OpenUrl
  2. ↵
    1. C. Caloz et al
    ., Electromagnetic nonreciprocity. Phys. Rev. Appl. 10, 047001 (2018).
    OpenUrl
  3. ↵
    1. L. D. Barron,
    2. J. Vrbancich
    , Magneto-chiral birefringence and dichroism. Mol. Phys. 51, 715 (1984).
    OpenUrlCrossRef
  4. ↵
    1. Y. Tokura,
    2. N. Nagaosa
    , Nonreciprocal responses from non-centrosymmetric quantum materials. Nat. Commun. 9, 3740 (2018).
    OpenUrl
  5. ↵
    1. S. Toyoda et al.
    , One-way transparency of light in multiferroic CuB2O4. Phys. Rev. Lett. 115, 267207 (2015).
    OpenUrl
  6. ↵
    1. R. W. Damon,
    2. J. R. Eshbach
    , Magnetostatic modes of a ferromagnet slab. J. Phys. Chem. Solids 19, 308–320 (1961).
    OpenUrlCrossRef
  7. ↵
    1. T. An et al
    ., Unidirectional spin-wave heat conveyer. Nat. Mater. 12, 549–553 (2013).
    OpenUrl
  8. ↵
    1. R. L. Melcher
    , Linear contribution to spatial dispersion in the spin-wave spectrum of ferromagnets. Phys. Rev. Lett. 30, 125 (1973).
    OpenUrl
  9. ↵
    1. M. Kataoka
    , Spin waves in systems with long period helical spin density waves due to the antisymmetric and symmetric exchange interactions. J. Phys. Soc. Jpn. 56, 3635–3647 (1987).
    OpenUrl
  10. ↵
    1. S. Seki et al
    ., Magnetochiral nonreciprocity of volume spin wave propagation in chiral-lattice ferromagnets. Phys. Rev. B 93, 235131 (2016).
    OpenUrl
  11. ↵
    1. S. Seki et al
    ., Propagation dynamics of spin excitations along skyrmion strings. Nat. Commun. 11, 256 (2020).
    OpenUrl
  12. ↵
    1. Y. Iguchi,
    2. S. Uemura,
    3. K. Ueno,
    4. Y. Onose
    , Nonreciprocal magnon propagation in a noncentrosymmetric ferromagnet LiFe5O8. Phys. Rev. B Condens. Matter Mater. Phys. 92, 184419 (2015).
    OpenUrl
  13. ↵
    1. S. Seki,
    2. X. Z. Yu,
    3. S. Ishiwata,
    4. Y. Tokura
    , Observation of skyrmions in a multiferroic material. Science 336, 198–201 (2012).
    OpenUrlAbstract/FREE Full Text
  14. ↵
    1. T. Adams et al
    ., Long-wavelength helimagnetic order and skyrmion lattice phase in Cu2OSeO3. Phys. Rev. Lett. 108, 237204 (2012).
    OpenUrlCrossRefPubMed
  15. ↵
    1. O. Janson et al
    ., The quantum nature of skyrmions and half-skyrmions in Cu2OSeO3. Nat. Commun. 5, 5376 (2014).
    OpenUrl
  16. ↵
    1. Y. Onose,
    2. Y. Okamura,
    3. S. Seki,
    4. S. Ishiwata,
    5. Y. Tokura
    , Observation of magnetic excitations of Skyrmion crystal in a helimagnetic insulator Cu2OSeO3. Phys. Rev. Lett. 109, 037603 (2012).
    OpenUrlPubMed
  17. ↵
    1. Y. Okamura et al
    ., Microwave magnetoelectric effect via skyrmion resonance modes in a helimagnetic multiferroic. Nat. Commun. 4, 2391 (2013).
    OpenUrl
  18. ↵
    1. N. Ogawa,
    2. S. Seki,
    3. Y. Tokura
    , Ultrafast optical excitation of magnetic skyrmions. Sci. Rep. 5, 9552 (2015).
    OpenUrl
  19. ↵
    1. T. Schwarze et al
    ., Universal helimagnon and skyrmion excitations in metallic, semiconducting and insulating chiral magnets. Nat. Mater. 14, 478–483 (2015).
    OpenUrl
  20. ↵
    1. M. Kugler et al
    ., Band structure of helimagnons in MnSi resolved by inelastic neutron scattering. Phys. Rev. Lett. 115, 097203 (2015).
    OpenUrl
  21. ↵
    1. P. Y. Portnichenko et al.
    , Magnon spectrum of the helimagnetic insulator Cu2OSeO3. Nat. Commun. 7, 10725 (2016).
    OpenUrl
  22. ↵
    1. I. Stasinopoulos et al
    ., Low spin wave damping in the insulating chiral magnet Cu2OSeO3. Appl. Phys. Lett. 111, 032408 (2017).
    OpenUrl
  23. ↵
    1. M. Weiler et al
    ., Helimagnon resonances in an intrinsic chiral magnonic crystal. Phys. Rev. Lett. 119, 237204 (2017).
    OpenUrl
  24. ↵
    1. T. J. Sato et al
    ., Magnon dispersion shift in the induced ferromagnetic phase of noncentrosymmetric MnSi. Phys. Rev. B 94, 144420 (2016).
    OpenUrl
  25. ↵
    1. T. Weber et al
    ., Field dependence of nonreciprocal magnons in chiral MnSi. Phys. Rev. B 97, 224403 (2018).
    OpenUrl
  26. ↵
    1. T. Weber et al
    ., Polarized inelastic neutron scattering of nonreciprocal spin waves in MnSi. Phys. Rev. B 100, 060404 (2019).
    OpenUrl
  27. ↵
    1. T. Sebastian,
    2. K. Schultheiss,
    3. B. Obry,
    4. B. Hillebrands,
    5. H. Schultheiss
    , Micro-focused Brillouin light scattering: Imaging spin waves at the nanoscale. Front. Phys. 3, 35 (2015).
    OpenUrl
  28. ↵
    1. Kh. Zakeri et al
    ., Asymmetric spin-wave dispersion on Fe(110): Direct evidence of the Dzyaloshinskii-Moriya interaction. Phys. Rev. Lett. 104, 137203 (2010).
    OpenUrlPubMed
  29. ↵
    1. H. T. Nembach,
    2. J. M. Shaw,
    3. M. Weiler,
    4. E. Jue,
    5. T. J. Silva
    , Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii–Moriya interaction in metal films. Nat. Phys. 11, 825–829 (2015).
    OpenUrl
  30. ↵
    1. J. Cho et al
    ., Thickness dependence of the interfacial Dzyaloshinskii-Moriya interaction in inversion symmetry broken systems. Nat. Commun. 6, 7635 (2015).
    OpenUrlPubMed
  31. ↵
    1. K. Di et al
    ., Direct observation of the Dzyaloshinskii-Moriya interaction in a Pt/Co/Ni film. Phys. Rev. Lett. 114, 047201 (2015).
    OpenUrlPubMed
  32. ↵
    1. A. Chacon et al
    ., Observation of two independent skyrmion phases in a chiral magnetic material. Nat. Phys. 14, 936–941 (2018).
    OpenUrl
  33. ↵
    1. M. Garst,
    2. J. Waizner,
    3. D. Grundler
    , Collective spin excitations of helices and magnetic skyrmions: Review and perspectives of magnonics in non-centrosymmetric magnets. J. Phys. D Appl. Phys. 50, 293002 (2017).
    OpenUrl
  34. ↵
    1. C. Herring,
    2. C. Kittel
    , On the theory of spin waves in ferromagnetic media. Phys. Rev. 81, 869 (1951).
    OpenUrl
  35. ↵
    1. W. Wettling,
    2. M. G. Cottam,
    3. J. R. Sandercock
    , The relation between one-magnon light scattering and the complex magneto-optic effects in YIG. J. Phys. C Solid State Phys. 8, 211–228 (1975).
    OpenUrl
  36. ↵
    1. R. B. Versteeg et al
    ., Optically probed symmetry breaking in the chiral magnet Cu2OSeO3. Phys. Rev. B 94, 094409 (2016).
    OpenUrl

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

Subscribers, for more details, please visit our Subscriptions FAQ.

Please click here to log into the PNAS submission website.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Nonreciprocity of spin waves in the conical helix state
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Nonreciprocity of spin waves in the conical helix state
N. Ogawa, L. Köhler, M. Garst, S. Toyoda, S. Seki, Y. Tokura
Proceedings of the National Academy of Sciences Feb 2021, 118 (8) e2022927118; DOI: 10.1073/pnas.2022927118

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Nonreciprocity of spin waves in the conical helix state
N. Ogawa, L. Köhler, M. Garst, S. Toyoda, S. Seki, Y. Tokura
Proceedings of the National Academy of Sciences Feb 2021, 118 (8) e2022927118; DOI: 10.1073/pnas.2022927118
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 118 (8)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Physical Sciences
  • Physics

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Materials and Methods
    • Data Availability
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Surgeons hands during surgery
Inner Workings: Advances in infectious disease treatment promise to expand the pool of donor organs
Despite myriad challenges, clinicians see room for progress.
Image credit: Shutterstock/David Tadevosian.
Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Double helix
Journal Club: Noncoding DNA shown to underlie function, cause limb malformations
Using CRISPR, researchers showed that a region some used to label “junk DNA” has a major role in a rare genetic disorder.
Image credit: Nathan Devery.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Multi-color molecular model
Enzymatic breakdown of PET plastic
A study demonstrates how two enzymes—MHETase and PETase—work synergistically to depolymerize the plastic pollutant PET.
Image credit: Aaron McGeehan (artist).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490