A tandem activity-based sensing and labeling strategy enables imaging of transcellular hydrogen peroxide signaling
- aDepartment of Chemistry, University of California, Berkeley, CA 94720;
- bDepartment of Neurology, University of California, San Francisco and San Francisco Veterans Affairs Medical Center, San Francisco, CA 94143;
- cNeurology Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121;
- dDepartment of Molecular and Cell Biology, University of California, Berkeley, CA 94720;
- eHelen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
See allHide authors and affiliations
Edited by Catherine J. Murphy, University of Illinois at Urbana–Champaign, Urbana, IL, and approved January 7, 2021 (received for review September 2, 2020)

Significance
Hydrogen peroxide is a ubiquitous reactive oxygen species (ROS) with diverse signaling and stress contributions, but its transient and mobile nature makes it challenging to study in living systems. Here we report a tandem activity-based sensing and labeling strategy for capture and permanent recording of localized H2O2 fluxes by fluorescence imaging. Application of this technology enables direct visualization of ROS transport in cell-to-cell communication using a microglia–neuron coculture model to monitor cell-specific elevations in H2O2 levels. In addition to revealing a fundamental contribution of ROS to transcellular signaling, this work presages further opportunities to combine dual chemical sensing and labeling approaches to probe biology with improved spatial fidelity.
Abstract
Reactive oxygen species (ROS) like hydrogen peroxide (H2O2) are transient species that have broad actions in signaling and stress, but spatioanatomical understanding of their biology remains insufficient. Here, we report a tandem activity-based sensing and labeling strategy for H2O2 imaging that enables capture and permanent recording of localized H2O2 fluxes. Peroxy Green-1 Fluoromethyl (PG1-FM) is a diffusible small-molecule probe that senses H2O2 by a boronate oxidation reaction to trigger dual release and covalent labeling of a fluorescent product, thus preserving spatial information on local H2O2 changes. This unique reagent enables visualization of transcellular redox signaling in a microglia–neuron coculture cell model, where selective activation of microglia for ROS production increases H2O2 in nearby neurons. In addition to identifying ROS-mediated cell-to-cell communication, this work provides a starting point for the design of chemical probes that can achieve high spatial fidelity by combining activity-based sensing and labeling strategies.
- fluorescent hydrogen peroxide probe
- activity-based sensing
- redox signaling
- oxidative stress
- NADPH oxidase
Footnotes
- ↵1To whom correspondence may be addressed. Email: chrischang{at}berkeley.edu.
Author contributions: H.I., E.C., R.A.S., and C.J.C. designed research; H.I., E.C., and M.S.M. performed research; H.I. contributed new reagents/analytic tools; H.I., E.C., M.S.M., R.A.S., and C.J.C. analyzed data; and H.I. and C.J.C. wrote the paper.
The authors declare no competing interest.
This article is a PNAS Direct Submission.
This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2018513118/-/DCSupplemental.
Data Availability
All study data are included in the article and/or SI Appendix.
Published under the PNAS license.
References
- ↵
- ↵
- ↵
- ↵
- ↵
- ↵
- ↵
- ↵
- B. D. Volpp,
- W. M. Nauseef,
- R. A. Clark
- ↵
- ↵
- ↵
- A. Kamsler,
- M. Segal
- ↵
- ↵
- ↵
- R. De Pasquale,
- T. F. Beckhauser,
- M. S. Hernandes,
- L. R. Giorgetti Britto
- ↵
- ↵
- ↵
- ↵
- ↵
- R. S. Wible et al
- ↵
- J. F. Pei et al
- ↵
- ↵
- ↵
- E. W. Miller,
- B. C. Dickinson,
- C. J. Chang
- ↵
- G. P. Bienert et al
- ↵
- M. Dynowski,
- G. Schaaf,
- D. Loque,
- O. Moran,
- U. Ludewig
- ↵
- O. Rodrigues et al
- ↵
- C. Rodrigues et al
- ↵
- J. García-Calvo et al
- ↵
- N. Panyain et al
- ↵
- G. J. Brighty et al
- ↵
- W. Wang,
- K. J. Wu,
- K. Vellaisamy,
- C. H. Leung,
- D. L. Ma
- ↵
- ↵
- ↵
- ↵
- ↵
- ↵
- ↵
- ↵
- ↵
- S. Ye,
- J. J. Hu,
- D. Yang
- ↵
- S. Ye et al
- ↵
- K. J. Bruemmer,
- S. W. M. Crossley,
- C. J. Chang
- ↵
- D. Pham et al
- ↵
- ↵
- ↵
- ↵
- M. Gutscher et al
- ↵
- ↵
- T. Doura et al
- ↵
- H. Ito et al
- ↵
- M. Chiba et al
- ↵
- J. Zhang,
- Y.-Q. Sun,
- J. Liu,
- Y. Shi,
- W. Guo
- ↵
- ↵
- H. Zhu et al
- ↵
- ↵
- L. Wu et al
- ↵
- ↵
- C. Yik-Sham Chung,
- G. A. Timblin,
- K. Saijo,
- C. J. Chang
- ↵
- ↵
- ↵
- ↵
- ↵
- L. Qin et al
- ↵
- J. Ohata et al
- ↵
- S. Lee et al
Log in using your username and password
Log in through your institution
Purchase access
Subscribers, for more details, please visit our Subscriptions FAQ.
Please click here to log into the PNAS submission website.
Citation Manager Formats
Article Classifications
- Physical Sciences
- Chemistry
- Biological Sciences
- Biochemistry