Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

A tandem activity-based sensing and labeling strategy enables imaging of transcellular hydrogen peroxide signaling

View ORCID ProfileHidefumi Iwashita, View ORCID ProfileErika Castillo, View ORCID ProfileMarco S. Messina, View ORCID ProfileRaymond A. Swanson, and View ORCID ProfileChristopher J. Chang
  1. aDepartment of Chemistry, University of California, Berkeley, CA 94720;
  2. bDepartment of Neurology, University of California, San Francisco and San Francisco Veterans Affairs Medical Center, San Francisco, CA 94143;
  3. cNeurology Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121;
  4. dDepartment of Molecular and Cell Biology, University of California, Berkeley, CA 94720;
  5. eHelen Wills Neuroscience Institute, University of California, Berkeley, CA 94720

See allHide authors and affiliations

PNAS March 2, 2021 118 (9) e2018513118; https://doi.org/10.1073/pnas.2018513118
Hidefumi Iwashita
aDepartment of Chemistry, University of California, Berkeley, CA 94720;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hidefumi Iwashita
Erika Castillo
bDepartment of Neurology, University of California, San Francisco and San Francisco Veterans Affairs Medical Center, San Francisco, CA 94143;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Erika Castillo
Marco S. Messina
aDepartment of Chemistry, University of California, Berkeley, CA 94720;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Marco S. Messina
Raymond A. Swanson
bDepartment of Neurology, University of California, San Francisco and San Francisco Veterans Affairs Medical Center, San Francisco, CA 94143;
cNeurology Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Raymond A. Swanson
Christopher J. Chang
aDepartment of Chemistry, University of California, Berkeley, CA 94720;
dDepartment of Molecular and Cell Biology, University of California, Berkeley, CA 94720;
eHelen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Christopher J. Chang
  • For correspondence: chrischang@berkeley.edu
  1. Edited by Catherine J. Murphy, University of Illinois at Urbana–Champaign, Urbana, IL, and approved January 7, 2021 (received for review September 2, 2020)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

Hydrogen peroxide is a ubiquitous reactive oxygen species (ROS) with diverse signaling and stress contributions, but its transient and mobile nature makes it challenging to study in living systems. Here we report a tandem activity-based sensing and labeling strategy for capture and permanent recording of localized H2O2 fluxes by fluorescence imaging. Application of this technology enables direct visualization of ROS transport in cell-to-cell communication using a microglia–neuron coculture model to monitor cell-specific elevations in H2O2 levels. In addition to revealing a fundamental contribution of ROS to transcellular signaling, this work presages further opportunities to combine dual chemical sensing and labeling approaches to probe biology with improved spatial fidelity.

Abstract

Reactive oxygen species (ROS) like hydrogen peroxide (H2O2) are transient species that have broad actions in signaling and stress, but spatioanatomical understanding of their biology remains insufficient. Here, we report a tandem activity-based sensing and labeling strategy for H2O2 imaging that enables capture and permanent recording of localized H2O2 fluxes. Peroxy Green-1 Fluoromethyl (PG1-FM) is a diffusible small-molecule probe that senses H2O2 by a boronate oxidation reaction to trigger dual release and covalent labeling of a fluorescent product, thus preserving spatial information on local H2O2 changes. This unique reagent enables visualization of transcellular redox signaling in a microglia–neuron coculture cell model, where selective activation of microglia for ROS production increases H2O2 in nearby neurons. In addition to identifying ROS-mediated cell-to-cell communication, this work provides a starting point for the design of chemical probes that can achieve high spatial fidelity by combining activity-based sensing and labeling strategies.

  • fluorescent hydrogen peroxide probe
  • activity-based sensing
  • redox signaling
  • oxidative stress
  • NADPH oxidase

Footnotes

  • ↵1To whom correspondence may be addressed. Email: chrischang{at}berkeley.edu.
  • Author contributions: H.I., E.C., R.A.S., and C.J.C. designed research; H.I., E.C., and M.S.M. performed research; H.I. contributed new reagents/analytic tools; H.I., E.C., M.S.M., R.A.S., and C.J.C. analyzed data; and H.I. and C.J.C. wrote the paper.

  • The authors declare no competing interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2018513118/-/DCSupplemental.

Data Availability

All study data are included in the article and/or SI Appendix.

Published under the PNAS license.

View Full Text

References

  1. ↵
    1. B. D’Autréaux,
    2. M. B. Toledano
    , ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813–824 (2007).
    OpenUrlCrossRefPubMed
  2. ↵
    1. C. C. Winterbourn
    , Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 4, 278–286 (2008).
    OpenUrlCrossRefPubMed
  3. ↵
    1. H. M. Cochemé et al
    ., Measurement of H2O2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix. Cell Metab. 13, 340–350 (2011).
    OpenUrlCrossRefPubMed
  4. ↵
    1. M. Schieber,
    2. N. S. Chandel
    , ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453–R462 (2014).
    OpenUrlCrossRefPubMed
  5. ↵
    1. D. Reichmann,
    2. W. Voth,
    3. U. Jakob
    , Maintaining a healthy proteome during oxidative stress. Mol. Cell 69, 203–213 (2018).
    OpenUrlCrossRef
  6. ↵
    1. H. Sies,
    2. D. P. Jones
    , Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020).
    OpenUrlCrossRef
  7. ↵
    1. M. C. Dinauer,
    2. S. H. Orkin,
    3. R. Brown,
    4. A. J. Jesaitis,
    5. C. A. Parkos
    , The glycoprotein encoded by the X-linked chronic granulomatous disease locus is a component of the neutrophil cytochrome b complex. Nature 327, 717–720 (1987).
    OpenUrlCrossRefPubMed
  8. ↵
    1. B. D. Volpp,
    2. W. M. Nauseef,
    3. R. A. Clark
    , Two cytosolic neutrophil oxidase components absent in autosomal chronic granulomatous disease. Science 242, 1295–1297 (1988).
    OpenUrlAbstract/FREE Full Text
  9. ↵
    1. R. A. Clark et al
    ., Genetic variants of chronic granulomatous disease: Prevalence of deficiencies of two cytosolic components of the NADPH oxidase system. N. Engl. J. Med. 321, 647–652 (1989).
    OpenUrlCrossRefPubMed
  10. ↵
    1. J. D. Lambeth
    , NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4, 181–189 (2004).
    OpenUrlCrossRefPubMed
  11. ↵
    1. A. Kamsler,
    2. M. Segal
    , Hydrogen peroxide modulation of synaptic plasticity. J. Neurosci. 23, 269–276 (2003).
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. M. V. Tejada-Simon et al
    ., Synaptic localization of a functional NADPH oxidase in the mouse hippocampus. Mol. Cell. Neurosci. 29, 97–106 (2005).
    OpenUrlCrossRefPubMed
  13. ↵
    1. A. M. Brennan et al
    ., NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat. Neurosci. 12, 857–863 (2009).
    OpenUrlCrossRefPubMed
  14. ↵
    1. R. De Pasquale,
    2. T. F. Beckhauser,
    3. M. S. Hernandes,
    4. L. R. Giorgetti Britto
    , LTP and LTD in the visual cortex require the activation of NOX2. J. Neurosci. 34, 12778–12787 (2014).
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. B. C. Dickinson,
    2. J. Peltier,
    3. D. Stone,
    4. D. V. Schaffer,
    5. C. J. Chang
    , Nox2 redox signaling maintains essential cell populations in the brain. Nat. Chem. Biol. 7, 106–112 (2011).
    OpenUrlCrossRefPubMed
  16. ↵
    1. J. E. Le Belle et al
    ., Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 8, 59–71 (2011).
    OpenUrlCrossRefPubMed
  17. ↵
    1. C. Xu,
    2. J. Luo,
    3. L. He,
    4. C. Montell,
    5. N. Perrimon
    , Oxidative stress induces stem cell proliferation via TRPA1/RyR-mediated Ca2+ signaling in the Drosophila midgut. eLife 6, e22441 (2017).
    OpenUrlCrossRef
  18. ↵
    1. J. S. O’Neill,
    2. A. B. Reddy
    , Circadian clocks in human red blood cells. Nature 469, 498–503 (2011).
    OpenUrlCrossRefPubMed
  19. ↵
    1. R. S. Wible et al
    ., NRF2 regulates core and stabilizing circadian clock loops, coupling redox and timekeeping in Mus musculus. eLife 7, e31656 (2018).
    OpenUrl
  20. ↵
    1. J. F. Pei et al
    ., Diurnal oscillations of endogenous H2O2 sustained by p66Shc regulate circadian clocks. Nat. Cell Biol. 21, 1553–1564 (2019).
    OpenUrl
  21. ↵
    1. P. Niethammer,
    2. C. Grabher,
    3. A. T. Look,
    4. T. J. Mitchison
    , A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459, 996–999 (2009).
    OpenUrlCrossRefPubMed
  22. ↵
    1. A. Hervera et al
    ., Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons. Nat. Cell Biol. 20, 307–319 (2018).
    OpenUrlCrossRefPubMed
  23. ↵
    1. E. W. Miller,
    2. B. C. Dickinson,
    3. C. J. Chang
    , Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc. Natl. Acad. Sci. U.S.A. 107, 15681–15686 (2010).
    OpenUrlAbstract/FREE Full Text
  24. ↵
    1. G. P. Bienert et al
    ., Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 282, 1183–1192 (2007).
    OpenUrlAbstract/FREE Full Text
  25. ↵
    1. M. Dynowski,
    2. G. Schaaf,
    3. D. Loque,
    4. O. Moran,
    5. U. Ludewig
    , Plant plasma membrane water channels conduct the signalling molecule H2O2. Biochem. J. 414, 53–61 (2008).
    OpenUrlAbstract/FREE Full Text
  26. ↵
    1. O. Rodrigues et al
    ., Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA- and pathogen-triggered stomatal closure. Proc. Natl. Acad. Sci. U.S.A. 114, 9200–9205 (2017).
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. C. Rodrigues et al
    ., Human aquaporin-5 facilitates hydrogen peroxide permeation affecting adaption to oxidative stress and cancer cell migration. Cancers (Basel) 11, 932 (2019).
    OpenUrl
  28. ↵
    1. J. García-Calvo et al
    ., Fluorescent membrane tension probes for super-resolution microscopy: Combining mechanosensitive cascade switching with dynamic-covalent ketone chemistry. J. Am. Chem. Soc. 142, 12034–12038 (2020).
    OpenUrl
  29. ↵
    1. N. Panyain et al
    ., Discovery of a potent and selective covalent inhibitor and activity-based probe for the deubiquitylating enzyme UCHL1, with antifibrotic activity. J. Am. Chem. Soc. 142, 12020–12026 (2020).
    OpenUrl
  30. ↵
    1. G. J. Brighty et al
    ., Using sulfuramidimidoyl fluorides that undergo sulfur(VI) fluoride exchange for inverse drug discovery. Nat. Chem. 12, 906–913 (2020).
    OpenUrl
  31. ↵
    1. W. Wang,
    2. K. J. Wu,
    3. K. Vellaisamy,
    4. C. H. Leung,
    5. D. L. Ma
    , Peptide-conjugated long-lived theranostic imaging for targeting GRPr in cancer and immune cells. Angew. Chem. Int. Ed. Engl. 59, 17897–17902 (2020).
    OpenUrl
  32. ↵
    1. A. R. Lippert,
    2. G. C. Van de Bittner,
    3. C. J. Chang
    , Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems. Acc. Chem. Res. 44, 793–804 (2011).
    OpenUrlCrossRefPubMed
  33. ↵
    1. T. F. Brewer,
    2. F. J. Garcia,
    3. C. S. Onak,
    4. K. S. Carroll,
    5. C. J. Chang
    , Chemical approaches to discovery and study of sources and targets of hydrogen peroxide redox signaling through NADPH oxidase proteins. Annu. Rev. Biochem. 84, 765–790 (2015).
    OpenUrlCrossRefPubMed
  34. ↵
    1. M. C. Y. Chang,
    2. A. Pralle,
    3. E. Y. Isacoff,
    4. C. J. Chang
    , A selective, cell-permeable optical probe for hydrogen peroxide in living cells. J. Am. Chem. Soc. 126, 15392–15393 (2004).
    OpenUrlCrossRefPubMed
  35. ↵
    1. H. Maeda et al
    ., Fluorescent probes for hydrogen peroxide based on a non-oxidative mechanism. Angew. Chem. Int. Ed. 43, 2389–2391 (2004).
    OpenUrlCrossRefPubMed
  36. ↵
    1. E. W. Miller,
    2. O. Tulyathan,
    3. E. Y. Isacoff,
    4. C. J. Chang
    , Molecular imaging of hydrogen peroxide produced for cell signaling. Nat. Chem. Biol. 3, 263–267 (2007).
    OpenUrlCrossRefPubMed
  37. ↵
    1. A. R. Lippert,
    2. K. R. Keshari,
    3. J. Kurhanewicz,
    4. C. J. Chang
    , A hydrogen peroxide-responsive hyperpolarized 13C MRI contrast agent. J. Am. Chem. Soc. 133, 3776–3779 (2011).
    OpenUrlCrossRefPubMed
  38. ↵
    1. M. Abo et al
    ., Development of a highly sensitive fluorescence probe for hydrogen peroxide. J. Am. Chem. Soc. 133, 10629–10637 (2011).
    OpenUrlCrossRefPubMed
  39. ↵
    1. Y. Hitomi,
    2. T. Takeyasu,
    3. T. Funabiki,
    4. M. Kodera
    , Detection of enzymatically generated hydrogen peroxide by metal-based fluorescent probe. Anal. Chem. 83, 9213–9216 (2011).
    OpenUrlPubMed
  40. ↵
    1. S. Ye,
    2. J. J. Hu,
    3. D. Yang
    , Tandem payne/dakin reaction: A new strategy for hydrogen peroxide detection and molecular imaging. Angew. Chem. Int. Ed. Engl. 57, 10173–10177 (2018).
    OpenUrl
  41. ↵
    1. S. Ye et al
    ., A highly selective and sensitive chemiluminescent probe for realtime monitoring of hydrogen peroxide in cells and animals. Angew. Chem. Int. Ed. 59, 1–6 (2020).
    OpenUrl
  42. ↵
    1. K. J. Bruemmer,
    2. S. W. M. Crossley,
    3. C. J. Chang
    , Activity-based sensing: A synthetic methods approach for selective molecular imaging and beyond. Angew. Chem. Int. Ed. Engl. 59, 13734–13762 (2020).
    OpenUrl
  43. ↵
    1. D. Pham et al
    ., Fluorogenic probe using a mislow-evans rearrangement for real-time imaging of hydrogen peroxide. Angew. Chem. Int. Ed. Engl. 59, 17435–17441 (2020).
    OpenUrl
  44. ↵
    1. V. V. Belousov et al
    ., Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3, 281–286 (2006).
    OpenUrlCrossRefPubMed
  45. ↵
    1. K. N. Markvicheva et al
    ., A genetically encoded sensor for H2O2 with expanded dynamic range. Bioorg. Med. Chem. 19, 1079–1084 (2011).
    OpenUrlCrossRefPubMed
  46. ↵
    1. D. S. Bilan et al
    ., HyPer-3: A genetically encoded H(2)O(2) probe with improved performance for ratiometric and fluorescence lifetime imaging. ACS Chem. Biol. 8, 535–542 (2013).
    OpenUrlCrossRefPubMed
  47. ↵
    1. M. Gutscher et al
    ., Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. J. Biol. Chem. 284, 31532–31540 (2009).
    OpenUrlAbstract/FREE Full Text
  48. ↵
    1. B. Morgan et al
    ., Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes. Nat. Chem. Biol. 12, 437–443 (2016).
    OpenUrlCrossRefPubMed
  49. ↵
    1. T. Doura et al
    ., Detection of lacZ-positive cells in living tissue with single-cell resolution. Angew. Chem. Int. Ed. Engl. 55, 9620–9624 (2016).
    OpenUrl
  50. ↵
    1. H. Ito et al
    ., Red-shifted fluorogenic substrate for detection of lacZ-positive cells in living tissue with single-cell resolution. Angew. Chem. Int. Ed. Engl. 57, 15702–15706 (2018).
    OpenUrl
  51. ↵
    1. M. Chiba et al
    ., Activatable photosensitizer for targeted ablation of lacZ-positive cells with single-cell resolution. ACS Cent. Sci. 5, 1676–1681 (2019).
    OpenUrl
  52. ↵
    1. J. Zhang,
    2. Y.-Q. Sun,
    3. J. Liu,
    4. Y. Shi,
    5. W. Guo
    , A fluorescent probe for the biological signaling molecule H2S based on a specific H2S trap group. Chem. Commun. (Camb.) 49, 11305–11307 (2013).
    OpenUrl
  53. ↵
    1. B. C. Dickinson,
    2. C. Huynh,
    3. C. J. Chang
    , A palette of fluorescent probes with varying emission colors for imaging hydrogen peroxide signaling in living cells. J. Am. Chem. Soc. 132, 5906–5915 (2010).
    OpenUrlCrossRefPubMed
  54. ↵
    1. H. Zhu et al
    ., Imaging and profiling of proteins under oxidative conditions in cells and tissues by hydrogen-peroxide-responsive labeling. J. Am. Chem. Soc. 142, 15711–15721 (2020).
    OpenUrl
  55. ↵
    1. A. Sikora,
    2. J. Zielonka,
    3. M. Lopez,
    4. J. Joseph,
    5. B. Kalyanaraman
    , Direct oxidation of boronates by peroxynitrite: Mechanism and implications in fluorescence imaging of peroxynitrite. Free Radic. Biol. Med. 47, 1401–1407 (2009).
    OpenUrlCrossRefPubMed
  56. ↵
    1. L. Wu et al
    ., Reaction-based fluorescent probes for the detection and imaging of reactive oxygen, nitrogen, and sulfur species. Acc. Chem. Res. 52, 2582–2597 (2019).
    OpenUrl
  57. ↵
    1. S. Carballal,
    2. S. Bartesaghi,
    3. R. Radi
    , Kinetic and mechanistic considerations to assess the biological fate of peroxynitrite. Biochim. Biophys. Acta 1840, 768–780 (2014).
    OpenUrlCrossRefPubMed
  58. ↵
    1. C. Yik-Sham Chung,
    2. G. A. Timblin,
    3. K. Saijo,
    4. C. J. Chang
    , Versatile histochemical approach to detection of hydrogen peroxide in cells and tissues based on puromycin staining. J. Am. Chem. Soc. 140, 6109–6121 (2018).
    OpenUrl
  59. ↵
    1. M. L. Block,
    2. L. Zecca,
    3. J.-S. Hong
    , Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57–69 (2007).
    OpenUrlCrossRefPubMed
  60. ↵
    1. M. A. Yenari,
    2. T. M. Kauppinen,
    3. R. A. Swanson
    , Microglial activation in stroke: Therapeutic targets. Neurotherapeutics 7, 378–391 (2010).
    OpenUrlCrossRefPubMed
  61. ↵
    1. S. Hickman,
    2. S. Izzy,
    3. P. Sen,
    4. L. Morsett,
    5. J. El Khoury
    , Microglia in neurodegeneration. Nat. Neurosci. 21, 1359–1369 (2018).
    OpenUrlCrossRefPubMed
  62. ↵
    1. A. I. Faden,
    2. J. Wu,
    3. B. A. Stoica,
    4. D. J. Loane
    , Progressive inflammation-mediated neurodegeneration after traumatic brain or spinal cord injury. Br. J. Pharmacol. 173, 681–691 (2016).
    OpenUrlCrossRefPubMed
  63. ↵
    1. L. Qin et al
    ., NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J. Biol. Chem. 279, 1415–1421 (2004).
    OpenUrlAbstract/FREE Full Text
  64. ↵
    1. J. Ohata et al
    ., An activity-based methionine bioconjugation approach to developing proximity-activated imaging reporters. ACS Cent. Sci. 6, 32–40 (2020).
    OpenUrl
  65. ↵
    1. S. Lee et al
    ., Activity-based sening with a metal-directed acyl imidazole strategy reveals cell type-dependent pools of labile brain copper. J. Am. Chem. Soc. 142, 14993–15003 (2020).
    OpenUrl

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

Subscribers, for more details, please visit our Subscriptions FAQ.

Please click here to log into the PNAS submission website.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A tandem activity-based sensing and labeling strategy enables imaging of transcellular hydrogen peroxide signaling
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
A tandem activity-based sensing and labeling strategy enables imaging of transcellular hydrogen peroxide signaling
Hidefumi Iwashita, Erika Castillo, Marco S. Messina, Raymond A. Swanson, Christopher J. Chang
Proceedings of the National Academy of Sciences Mar 2021, 118 (9) e2018513118; DOI: 10.1073/pnas.2018513118

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
A tandem activity-based sensing and labeling strategy enables imaging of transcellular hydrogen peroxide signaling
Hidefumi Iwashita, Erika Castillo, Marco S. Messina, Raymond A. Swanson, Christopher J. Chang
Proceedings of the National Academy of Sciences Mar 2021, 118 (9) e2018513118; DOI: 10.1073/pnas.2018513118
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley

Article Classifications

  • Physical Sciences
  • Chemistry
  • Biological Sciences
  • Biochemistry
Proceedings of the National Academy of Sciences: 118 (9)
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Results and Discussion
    • Concluding Remarks
    • Materials and Methods
    • Data Availability
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Smoke emanates from Japan’s Fukushima nuclear power plant a few days after tsunami damage
Core Concept: Muography offers a new way to see inside a multitude of objects
Muons penetrate much further than X-rays, they do essentially zero damage, and they are provided for free by the cosmos.
Image credit: Science Source/Digital Globe.
Water from a faucet fills a glass.
News Feature: How “forever chemicals” might impair the immune system
Researchers are exploring whether these ubiquitous fluorinated molecules might worsen infections or hamper vaccine effectiveness.
Image credit: Shutterstock/Dmitry Naumov.
Venus flytrap captures a fly.
Journal Club: Venus flytrap mechanism could shed light on how plants sense touch
One protein seems to play a key role in touch sensitivity for flytraps and other meat-eating plants.
Image credit: Shutterstock/Kuttelvaserova Stuchelova.
Illustration of groups of people chatting
Exploring the length of human conversations
Adam Mastroianni and Daniel Gilbert explore why conversations almost never end when people want them to.
Listen
Past PodcastsSubscribe
Horse fossil
Mounted horseback riding in ancient China
A study uncovers early evidence of equestrianism in ancient China.
Image credit: Jian Ma.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Cozzarelli Prize
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490