New Research In
Physical Sciences
Social Sciences
Featured Portals
Articles by Topic
Biological Sciences
Featured Portals
Articles by Topic
- Agricultural Sciences
- Anthropology
- Applied Biological Sciences
- Biochemistry
- Biophysics and Computational Biology
- Cell Biology
- Developmental Biology
- Ecology
- Environmental Sciences
- Evolution
- Genetics
- Immunology and Inflammation
- Medical Sciences
- Microbiology
- Neuroscience
- Pharmacology
- Physiology
- Plant Biology
- Population Biology
- Psychological and Cognitive Sciences
- Sustainability Science
- Systems Biology
Carcinogenic epoxides of benzo[a]pyrene and cyclopenta[cd]pyrene induce base substitutions via specific transversions

Abstract
We have determined the spectrum of base-pair substitution mutations induced in the lacI gene of a uvrB- strain of Escherichia coli by two polycyclic aromatic hydrocarbons--(+/-)7 alpha,8 beta-dihydroxy-9 beta,10 beta-epoxy-7,8,9,10 tetrahydrobenzo[a]pyrene (BPDE), and 3,4-epoxycylopenta[cd]pyrene (CPPE). Approximately 10% of all lacI mutations induced by either BPDE or CPPE are nonsense mutations, suggesting that base-pair substitutions are a large fraction of the mutational events induced by these agents in the uvrB- bacteria. Both carcinogens specifically induced the G . C leads to T . A and, to a lesser extent, the A . T leads to T . A transversions. One possible mechanism for transversion induction at G . C sites by BPDE might involve carcinogen binding to the exocyclic amino group of guanine in the template strand followed by a rotation of the modified base around its glycosylic bond from the anti to the syn conformation. This could allow specific pairing of modified bases with an imino tautomer of adenine.