Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Recognition of the muscarinic receptor by its endogenous neurotransmitter: binding of [3H]acetylcholine and its modulation by transition metal ions and guanine nucleotides

D Gurwitz, Y Kloog, and M Sokolovsky
PNAS June 1, 1984 81 (12) 3650-3654; https://doi.org/10.1073/pnas.81.12.3650
D Gurwitz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y Kloog
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Sokolovsky
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Agonist binding to the muscarinic receptor in rat cerebral cortex membranes was studied by using the neurotransmitter itself, [3H]acetylcholine [( 3H]AcCho). By using 10 microM atropine or oxotremorine to define specific binding, it was possible to demonstrate specific binding of [3H]AcCho that was sensitive to muscarinic but not to nicotinic ligands. Equilibrium binding experiments with 5-240 nM [3H]AcCho indicated specific binding of the ligand to a saturable population of muscarinic receptors (361 +/- 29 fmol/mg of protein; Kd = 76 +/- 17 nM). This value represented 25% of the available binding sites for a labeled antagonist in the same preparation and corresponds to the proportion of high-affinity agonist binding sites observed previously in competition experiments with labeled antagonists. Inclusion of transition metal ions (e.g., 2 mM Ni2+) in the assay increased the equilibrium binding of [3H]AcCho (628 +/- 38 fmol/mg of protein, Kd = 86 +/- 21 nM) but did not affect equilibrium binding of 3H-labeled antagonists, indicating conversion of low- into high-affinity muscarinic agonist binding sites. The increase developed slowly over 30 min of incubation at 25 degrees C but could be reversed rapidly (approximately equal to 2 min) by the chelating agent EDTA or by guanine nucleotides. These data directly reveal a slow though quickly reversible interconversion of low- into high-affinity muscarinic agonist binding sites.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Recognition of the muscarinic receptor by its endogenous neurotransmitter: binding of [3H]acetylcholine and its modulation by transition metal ions and guanine nucleotides
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Recognition of the muscarinic receptor by its endogenous neurotransmitter: binding of [3H]acetylcholine and its modulation by transition metal ions and guanine nucleotides
D Gurwitz, Y Kloog, M Sokolovsky
Proceedings of the National Academy of Sciences Jun 1984, 81 (12) 3650-3654; DOI: 10.1073/pnas.81.12.3650

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Recognition of the muscarinic receptor by its endogenous neurotransmitter: binding of [3H]acetylcholine and its modulation by transition metal ions and guanine nucleotides
D Gurwitz, Y Kloog, M Sokolovsky
Proceedings of the National Academy of Sciences Jun 1984, 81 (12) 3650-3654; DOI: 10.1073/pnas.81.12.3650
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
  • Info & Metrics
  • PDF

You May Also be Interested in

Abstract depiction of a guitar and musical note
Science & Culture: At the nexus of music and medicine, some see disease treatments
Although the evidence is still limited, a growing body of research suggests music may have beneficial effects for diseases such as Parkinson’s.
Image credit: Shutterstock/agsandrew.
Scientist looking at an electronic tablet
Opinion: Standardizing gene product nomenclature—a call to action
Biomedical communities and journals need to standardize nomenclature of gene products to enhance accuracy in scientific and public communication.
Image credit: Shutterstock/greenbutterfly.
One red and one yellow modeled protein structures
Journal Club: Study reveals evolutionary origins of fold-switching protein
Shapeshifting designs could have wide-ranging pharmaceutical and biomedical applications in coming years.
Image credit: Acacia Dishman/Medical College of Wisconsin.
White and blue bird
Hazards of ozone pollution to birds
Amanda Rodewald, Ivan Rudik, and Catherine Kling talk about the hazards of ozone pollution to birds.
Listen
Past PodcastsSubscribe
Goats standing in a pin
Transplantation of sperm-producing stem cells
CRISPR-Cas9 gene editing can improve the effectiveness of spermatogonial stem cell transplantation in mice and livestock, a study finds.
Image credit: Jon M. Oatley.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490