New Research In
Physical Sciences
Social Sciences
Featured Portals
Articles by Topic
Biological Sciences
Featured Portals
Articles by Topic
- Agricultural Sciences
- Anthropology
- Applied Biological Sciences
- Biochemistry
- Biophysics and Computational Biology
- Cell Biology
- Developmental Biology
- Ecology
- Environmental Sciences
- Evolution
- Genetics
- Immunology and Inflammation
- Medical Sciences
- Microbiology
- Neuroscience
- Pharmacology
- Physiology
- Plant Biology
- Population Biology
- Psychological and Cognitive Sciences
- Sustainability Science
- Systems Biology
Active-site carbamate formation and reaction-intermediate-analog binding by ribulosebisphosphate carboxylase/oxygenase in the absence of its small subunits

Abstract
Even though depleted of more than 90% of its small subunits, ribulose 1,5-bisphosphate carboxylase/oxygenase from Synechococcus ACMM 323 still formed a stable complex with 2-carboxyarabinitol 1,5-bisphosphate from which exchange of the activator CO2 molecule was prevented. The stoichiometry between nonexchangeable CO2 and large subunits was unchanged regardless of the presence or absence of small subunits. The small-subunit-depleted enzyme was also “activated” by exposure to CO2 and Mg2+, although it was necessary for the small subunits to be bound before this “activation” could be expressed. Binding of small subunits occurred rapidly, its rate depending on subunit concentration. The initial rate of “activation” was not slowed in the absence of small subunits but its extent at equilibrium was reduced. These observations are not consistent with an obligate role for the small subunits in the activation process. Their necessity in catalysis must stem from a more subtle involvement in the catalytic mechanism itself.