New Research In
Physical Sciences
Social Sciences
Featured Portals
Articles by Topic
Biological Sciences
Featured Portals
Articles by Topic
- Agricultural Sciences
- Anthropology
- Applied Biological Sciences
- Biochemistry
- Biophysics and Computational Biology
- Cell Biology
- Developmental Biology
- Ecology
- Environmental Sciences
- Evolution
- Genetics
- Immunology and Inflammation
- Medical Sciences
- Microbiology
- Neuroscience
- Pharmacology
- Physiology
- Plant Biology
- Population Biology
- Psychological and Cognitive Sciences
- Sustainability Science
- Systems Biology
beta-Glucuronidase from Escherichia coli as a gene-fusion marker

Abstract
We have developed a gene-fusion system based on the Escherichia coli beta-glucuronidase gene (uidA). The uidA gene has been cloned from E. coli K-12 and its entire nucleotide sequence has been determined. beta-Glucuronidase has been purified to homogeneity and characterized. The enzyme has a subunit molecular weight of 68,200, is very stable, and is easily and sensitively assayed using commercially available substrates. We have constructed gene fusions of the E. coli lacZ promoter and coding region with the coding region of the uidA gene that show beta-glucuronidase activity under lac control. Plasmid vectors have been constructed to facilitate the transfer of the beta-glucuronidase coding region to heterologous control regions, using many different restriction endonuclease cleavage sites. There are several biological systems in which uidA-encoded beta-glucuronidase may be an attractive alternative or complement to previously described gene-fusion markers such as beta-galactosidase or chloramphenicol acetyltransferase.