Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Improved free-energy parameters for predictions of RNA duplex stability

S M Freier, R Kierzek, J A Jaeger, N Sugimoto, M H Caruthers, T Neilson, and D H Turner
PNAS December 1, 1986 83 (24) 9373-9377; https://doi.org/10.1073/pnas.83.24.9373
S M Freier
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Kierzek
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J A Jaeger
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N Sugimoto
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M H Caruthers
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Neilson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D H Turner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Thermodynamic parameters for prediction of RNA duplex stability are reported. One parameter for duplex initiation and 10 parameters for helix propagation are derived from enthalpy and free-energy changes for helix formation by 45 RNA oligonucleotide duplexes. The oligomer sequences were chosen to maximize reliability of secondary structure predictions. Each of the 10 nearest-neighbor sequences is well-represented among the 45 oligonucleotides, and the sequences were chosen to minimize experimental errors in delta GO at 37 degrees C. These parameters predict melting temperatures of most oligonucleotide duplexes within 5 degrees C. This is about as good as can be expected from the nearest-neighbor model. Free-energy changes for helix propagation at dangling ends, terminal mismatches, and internal G X U mismatches, and free-energy changes for helix initiation at hairpin loops, internal loops, or internal bulges are also tabulated.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Improved free-energy parameters for predictions of RNA duplex stability
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Improved free-energy parameters for predictions of RNA duplex stability
S M Freier, R Kierzek, J A Jaeger, N Sugimoto, M H Caruthers, T Neilson, D H Turner
Proceedings of the National Academy of Sciences Dec 1986, 83 (24) 9373-9377; DOI: 10.1073/pnas.83.24.9373

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Improved free-energy parameters for predictions of RNA duplex stability
S M Freier, R Kierzek, J A Jaeger, N Sugimoto, M H Caruthers, T Neilson, D H Turner
Proceedings of the National Academy of Sciences Dec 1986, 83 (24) 9373-9377; DOI: 10.1073/pnas.83.24.9373
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
  • Info & Metrics
  • PDF

You May Also be Interested in

Penguin swimming
Origin and diversification of penguins
Juliana Vianna and Rauri Bowie explain the origin and diversification of penguins.
Listen
Past PodcastsSubscribe
Opinion: Cultural and linguistic diversities are crucial pillars of biodiversity
To best manage natural systems, modern societies must consider alternative views and interpretations of the natural world.
Inner Workings: Sub buoys prospects for 3D map of marine microbial communities
Implications range from elucidating metabolic pathways that help facilitate greenhouse gas release, to revealing compounds for medicine or pollution remediation.
Image credit: Mak Saito (Woods Hole Oceanographic Institution, Woods Hole, MA).
Ancient genomes reveal demographic history of France
A large genomic dataset reveals ancient demographic events that accompanied the transition to agriculture and changes in metallurgic practices in France.
Image credit: Pixabay/DavidRockDesign.
Satellite in orbit
Orbital-use fees in satellite industry
A study finds that imposing a tax on orbiting satellites could increase the value of the satellite industry from $600 billion to $3 trillion by 2040 by decreasing collision risks and space debris.
Image credit: NASA.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2020 National Academy of Sciences. Online ISSN 1091-6490