Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • Log out
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Lipid composition and fluidity of the human immunodeficiency virus

R C Aloia, F C Jensen, C C Curtain, P W Mobley, and L M Gordon
PNAS February 1, 1988 85 (3) 900-904; https://doi.org/10.1073/pnas.85.3.900
R C Aloia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F C Jensen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C C Curtain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P W Mobley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L M Gordon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Lipid analyses of the human immunodeficiency virus (HIV) propagated in Hut 78 cells indicated a low total lipid/protein ratio, a high cholesterol/phospholipid molar ratio, and major phospholipids consisting of phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, and phosphatidylserine; comparable lipid profiles were noted for human erythrocytes and other RNA viruses. Electron spin resonance (ESR) studies of HIV labeled with 5-nitroxide stearate (N-oxy-4',4'-dimethyloxazolidine derivative of ketostearate) showed a low "fluidity" at 37 degrees C, similar to other enveloped RNA viruses and erythrocytes and probably due to the high cholesterol/phospholipid ratio. Ethanol (50%) completely disrupts the envelope, contributing to the rapid inactivation of HIV by ethanol. Contrarily, heating to 57 degrees C causes much less fluidization, and this heating may play a role in the slower viral inactivation at high temperatures. Should a critical minimum ordering in the HIV envelope be necessary for viral stability and infectivity, manipulating the lipid composition or fluidizing the HIV membrane, or both, may provide an untried therapeutic approach.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Lipid composition and fluidity of the human immunodeficiency virus
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
Citation Tools
Lipid composition and fluidity of the human immunodeficiency virus
R C Aloia, F C Jensen, C C Curtain, P W Mobley, L M Gordon
Proceedings of the National Academy of Sciences Feb 1988, 85 (3) 900-904; DOI: 10.1073/pnas.85.3.900

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Lipid composition and fluidity of the human immunodeficiency virus
R C Aloia, F C Jensen, C C Curtain, P W Mobley, L M Gordon
Proceedings of the National Academy of Sciences Feb 1988, 85 (3) 900-904; DOI: 10.1073/pnas.85.3.900
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 116 (49)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
  • Info & Metrics
  • PDF

You May Also be Interested in

Modulating the body's networks could become mainstream therapy for many health issues. Image credit: The Feinstein Institutes for Medicine Research.
Core Concept: The rise of bioelectric medicine sparks interest among researchers, patients, and industry
Modulating the body's networks could become mainstream therapy for many health issues.
Image credit: The Feinstein Institutes for Medicine Research.
Adaptations in heart structure and function likely enabled endurance and survival in preindustrial humans. Image courtesy of Pixabay/Skeeze.
Human heart evolved for endurance
Adaptations in heart structure and function likely enabled endurance and survival in preindustrial humans.
Image courtesy of Pixabay/Skeeze.
Viscoelastic carrier fluids enhance retention of fire retardants on wildfire-prone vegetation. Image courtesy of Jesse D. Acosta.
Viscoelastic fluids and wildfire prevention
Viscoelastic carrier fluids enhance retention of fire retardants on wildfire-prone vegetation.
Image courtesy of Jesse D. Acosta.
Water requirements may make desert bird declines more likely in a warming climate. Image courtesy of Sean Peterson (photographer).
Climate change and desert bird collapse
Water requirements may make desert bird declines more likely in a warming climate.
Image courtesy of Sean Peterson (photographer).
QnAs with NAS member and plant biologist Sheng Yang He. Image courtesy of Sheng Yang He.
Featured QnAs
QnAs with NAS member and plant biologist Sheng Yang He
Image courtesy of Sheng Yang He.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Classics
  • Front Matter
  • Teaching Resources
  • Anthropology
  • Chemistry
  • Physics
  • Sustainability Science

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2019 National Academy of Sciences. Online ISSN 1091-6490