Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • Log out
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Depletion of mammalian O6-alkylguanine-DNA alkyltransferase activity by O6-benzylguanine provides a means to evaluate the role of this protein in protection against carcinogenic and therapeutic alkylating agents.

M E Dolan, R C Moschel, and A E Pegg
PNAS July 1, 1990 87 (14) 5368-5372; https://doi.org/10.1073/pnas.87.14.5368
M E Dolan
Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey 17033.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R C Moschel
Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey 17033.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A E Pegg
Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey 17033.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

O6-Alkylguanine-DNA alkyltransferase was rapidly and irreversibly inactivated by exposure to O6-benzylguanine or the p-chlorobenzyl and p-methylbenzyl analogues. This inactivation was much more rapid than with O6-methylguanine: incubation with 2.5 microM O6-benzylguanine led to more than a 90% loss of activity within 10 min, whereas 0.2 mM O6-methylguanine for 60 min was required for the same reduction. O6-Benzylguanine was highly effective in depleting the alkyltransferase activity of cultured human colon tumor (HT29) cells. Complete loss of activity was produced within 15 min after addition of O6-benzylguanine to the culture medium and a maximal effect was obtained with 5 microM. In contrast, at least 100 microM O6-methylguanine for 4 hr was needed to get a maximal effect, and this reduced the alkyltransferase by only 80%. Pretreatment of HT29 cells with 10 microM O6-benzylguanine for 2 hr led to a dramatic increase in the cytotoxicity produced by the chemotherapeutic agents 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) or 2-chloroethyl(methysulfonyl)methanesulfonate (Clomesone). Administration of O6-benzylguanine to mice at a dose of 10 mg/kg reduced alkyltransferase levels by more than 95% in both liver and kidney. These results indicate that depletion of the alkyltransferase by O6-benzylguanine may be used to investigate the role of the DNA repair protein in carcinogenesis and mutagenesis and that this treatment may be valuable to increase the chemotherapeutic effectiveness of chloroethylating agents.

Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Depletion of mammalian O6-alkylguanine-DNA alkyltransferase activity by O6-benzylguanine provides a means to evaluate the role of this protein in protection against carcinogenic and therapeutic alkylating agents.
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
Citation Tools
Depletion of mammalian O6-alkylguanine-DNA alkyltransferase activity by O6-benzylguanine provides a means to evaluate the role of this protein in protection against carcinogenic and therapeutic alkylating agents.
M E Dolan, R C Moschel, A E Pegg
Proceedings of the National Academy of Sciences Jul 1990, 87 (14) 5368-5372; DOI: 10.1073/pnas.87.14.5368

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Depletion of mammalian O6-alkylguanine-DNA alkyltransferase activity by O6-benzylguanine provides a means to evaluate the role of this protein in protection against carcinogenic and therapeutic alkylating agents.
M E Dolan, R C Moschel, A E Pegg
Proceedings of the National Academy of Sciences Jul 1990, 87 (14) 5368-5372; DOI: 10.1073/pnas.87.14.5368
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 116 (50)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
  • Info & Metrics
  • PDF

You May Also be Interested in

News Feature: Getting the world’s fastest cat to breed with speed
Cheetahs once rarely reproduced in captivity. Today, cubs are born every year in zoos. Breeding programs have turned their luck around—but they aren’t done yet.
Image credit: Mehgan Murphy/Smithsonian Conservation Biology Institute.
Adaptations in heart structure and function likely enabled endurance and survival in preindustrial humans. Image courtesy of Pixabay/Skeeze.
Human heart evolved for endurance
Adaptations in heart structure and function likely enabled endurance and survival in preindustrial humans.
Image courtesy of Pixabay/Skeeze.
Viscoelastic carrier fluids enhance retention of fire retardants on wildfire-prone vegetation. Image courtesy of Jesse D. Acosta.
Viscoelastic fluids and wildfire prevention
Viscoelastic carrier fluids enhance retention of fire retardants on wildfire-prone vegetation.
Image courtesy of Jesse D. Acosta.
Water requirements may make desert bird declines more likely in a warming climate. Image courtesy of Sean Peterson (photographer).
Climate change and desert bird collapse
Water requirements may make desert bird declines more likely in a warming climate.
Image courtesy of Sean Peterson (photographer).
QnAs with NAS member and plant biologist Sheng Yang He. Image courtesy of Sheng Yang He.
Featured QnAs
QnAs with NAS member and plant biologist Sheng Yang He
Image courtesy of Sheng Yang He.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Classics
  • Front Matter
  • Teaching Resources
  • Anthropology
  • Chemistry
  • Physics
  • Sustainability Science

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2019 National Academy of Sciences. Online ISSN 1091-6490