Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Transformed mammalian cells are deficient in kinase-mediated control of progression through the G1 phase of the cell cycle

H A Crissman, D M Gadbois, R A Tobey, and E M Bradbury
PNAS September 1, 1991 88 (17) 7580-7584; https://doi.org/10.1073/pnas.88.17.7580
H A Crissman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D M Gadbois
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R A Tobey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E M Bradbury
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

To investigate the role of kinase-mediated mechanisms in regulating mammalian cell proliferation, we determined the effects of the general protein kinase inhibitor staurosporine on the proliferation of a series of nontransformed and transformed cultured rodent and human cells. Levels of staurosporine as low as 1 ng/ml prevented nontransformed cells from entering S phase (i.e., induced G1 arrest), indicating that kinase-mediated processes are essential for commitment to DNA replication in normal cells. At higher concentrations of staurosporine (50-75 ng/ml), nontransformed mammalian cells were arrested in both G1 and G2. The period of sensitivity of nontransformed human diploid fibroblasts to low levels of the drug commenced 3 hr later than the G0/G1 boundary and extended through the G1/S boundary. Interference with activity of the G1-essential kinase(s) caused nontransformed human cells traversing mid-to-late G1 at the time of staurosporine addition to be "set back" to the initial staurosporine block point, suggesting the existence of a kinase-dependent "G1 clock" mechanism that must function continuously throughout the early cycle in normal cells. The initial staurosporine block point at 3 hr into G1 corresponds to neither the serum nor the amino acid restriction point. In marked contrast to the behavior of nontransformed cells, neither low nor high concentrations of staurosporine affected G1 progression in transformed cultures; high drug concentrations caused transformed cells to be arrested solely in G2. These results indicate that kinase-mediated regulation of DNA replication is lost as the result of neoplastic transformation, but the G2-arrest mechanism remains intact.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Transformed mammalian cells are deficient in kinase-mediated control of progression through the G1 phase of the cell cycle
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Transformed mammalian cells are deficient in kinase-mediated control of progression through the G1 phase of the cell cycle
H A Crissman, D M Gadbois, R A Tobey, E M Bradbury
Proceedings of the National Academy of Sciences Sep 1991, 88 (17) 7580-7584; DOI: 10.1073/pnas.88.17.7580

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Transformed mammalian cells are deficient in kinase-mediated control of progression through the G1 phase of the cell cycle
H A Crissman, D M Gadbois, R A Tobey, E M Bradbury
Proceedings of the National Academy of Sciences Sep 1991, 88 (17) 7580-7584; DOI: 10.1073/pnas.88.17.7580
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
  • Info & Metrics
  • PDF

You May Also be Interested in

Abstract depiction of a guitar and musical note
Science & Culture: At the nexus of music and medicine, some see disease treatments
Although the evidence is still limited, a growing body of research suggests music may have beneficial effects for diseases such as Parkinson’s.
Image credit: Shutterstock/agsandrew.
Scientist looking at an electronic tablet
Opinion: Standardizing gene product nomenclature—a call to action
Biomedical communities and journals need to standardize nomenclature of gene products to enhance accuracy in scientific and public communication.
Image credit: Shutterstock/greenbutterfly.
One red and one yellow modeled protein structures
Journal Club: Study reveals evolutionary origins of fold-switching protein
Shapeshifting designs could have wide-ranging pharmaceutical and biomedical applications in coming years.
Image credit: Acacia Dishman/Medical College of Wisconsin.
White and blue bird
Hazards of ozone pollution to birds
Amanda Rodewald, Ivan Rudik, and Catherine Kling talk about the hazards of ozone pollution to birds.
Listen
Past PodcastsSubscribe
Goats standing in a pin
Transplantation of sperm-producing stem cells
CRISPR-Cas9 gene editing can improve the effectiveness of spermatogonial stem cell transplantation in mice and livestock, a study finds.
Image credit: Jon M. Oatley.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490