Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: comparison with enzymatically formed nitric oxide from L-arginine

L J Ignarro, J M Fukuto, J M Griscavage, N E Rogers, and R E Byrns
  1. Department of Pharmacology, University of California, School of Medicine, Los Angeles 90024.

See allHide authors and affiliations

PNAS September 1, 1993 90 (17) 8103-8107; https://doi.org/10.1073/pnas.90.17.8103
L J Ignarro
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J M Fukuto
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J M Griscavage
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N E Rogers
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R E Byrns
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Nitric oxide (NO) in oxygen-containing aqueous solution has a short half-life that is often attributed to a rapid oxidation to both NO2- and NO3-. The chemical fate of NO in aqueous solution is often assumed to be the same as that in air, where NO is oxidized to NO2 followed by dimerization to N2O4. Water then reacts with N2O4 to form both NO2- and NO3-. We report here that NO in aqueous solution containing oxygen is oxidized primarily to NO2- with little or no formation of NO3-. In the presence of oxyhemoglobin or oxymyoglobin, however, NO and NO2- were oxidized completely to NO3-. Methemoglobin was inactive in this regard. The unpurified cytosolic fraction from rat cerebellum, which contains constitutive NO synthase activity, catalyzed the conversion of L-arginine primarily to NO3- (NO2-/NO3- ratio = 0.25). After chromatography on DEAE-Sephacel or affinity chromatography using 2',5'-ADP-Sepharose 4B, active fractions containing NO synthase activity catalyzed the conversion of L-arginine primarily to NO2- (NO2-/NO3- ratio = 5.6) or only to NO2-, respectively. Unpurified cytosol from activated rat alveolar macrophages catalyzed the conversion of L-arginine to NO2- without formation of NO3-. Addition of 30 microM oxyhemoglobin to all enzyme reaction mixtures resulted in the formation primarily of NO3- (NO2-/NO3- ratio = 0.09 to 0.20). Cyanide ion, which displaces NO2- from its binding sites on oxyhemoglobin, inhibited the formation of NO3-, thereby allowing NO2- to accumulate. These observations indicate clearly that the primary decomposition product of NO in aerobic aqueous solution is NO2- and that further oxidation to NO3- requires the presence of additional oxidizing species such as oxyhemoproteins.

PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: comparison with enzymatically formed nitric oxide from L-arginine
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: comparison with enzymatically formed nitric oxide from L-arginine
L J Ignarro, J M Fukuto, J M Griscavage, N E Rogers, R E Byrns
Proceedings of the National Academy of Sciences Sep 1993, 90 (17) 8103-8107; DOI: 10.1073/pnas.90.17.8103

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: comparison with enzymatically formed nitric oxide from L-arginine
L J Ignarro, J M Fukuto, J M Griscavage, N E Rogers, R E Byrns
Proceedings of the National Academy of Sciences Sep 1993, 90 (17) 8103-8107; DOI: 10.1073/pnas.90.17.8103
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
  • Info & Metrics
  • PDF

You May Also be Interested in

Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Model of the Amazon forest
News Feature: A sea in the Amazon
Did the Caribbean sweep into the western Amazon millions of years ago, shaping the region’s rich biodiversity?
Image credit: Tacio Cordeiro Bicudo (University of São Paulo, São Paulo, Brazil), Victor Sacek (University of São Paulo, São Paulo, Brazil), and Lucy Reading-Ikkanda (artist).
Syrian archaeological site
Journal Club: In Mesopotamia, early cities may have faltered before climate-driven collapse
Settlements 4,200 years ago may have suffered from overpopulation before drought and lower temperatures ultimately made them unsustainable.
Image credit: Andrea Ricci.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Birds nestling on tree branches
Parent–offspring conflict in songbird fledging
Some songbird parents might improve their own fitness by manipulating their offspring into leaving the nest early, at the cost of fledgling survival, a study finds.
Image credit: Gil Eckrich (photographer).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490