New Research In
Physical Sciences
Social Sciences
Featured Portals
Articles by Topic
Biological Sciences
Featured Portals
Articles by Topic
- Agricultural Sciences
- Anthropology
- Applied Biological Sciences
- Biochemistry
- Biophysics and Computational Biology
- Cell Biology
- Developmental Biology
- Ecology
- Environmental Sciences
- Evolution
- Genetics
- Immunology and Inflammation
- Medical Sciences
- Microbiology
- Neuroscience
- Pharmacology
- Physiology
- Plant Biology
- Population Biology
- Psychological and Cognitive Sciences
- Sustainability Science
- Systems Biology
Helix capping propensities in peptides parallel those in proteins
Related Article
- What determines where alpha-helices begin and end?- Dec 01, 1993

Abstract
Helix content of peptides with various uncharged nonaromatic amino acids at either the N-terminal or C-terminal position has been determined. The choice of N-terminal amino acid has a major effect on helix stability: asparagine is the best, glycine is very good, and glutamine is the worst helix-stabilizing amino acid at this position. The rank order of helix stabilization parallels the frequencies of these amino acids at the N-terminal boundary (N-cap) position of helices in proteins found by Richardson and Richardson [Richardson, J. S. & Richardson, D. C. (1988) Science 240, 1648-1652], and the N-terminal amino acid in a peptide composed of helix-forming amino acids may be considered as the N-cap residue. The choice of C-terminal amino acid has only a minor effect on helix stability. N-capping interactions may be responsible for the asymmetric distribution of helix content within a given peptide found by various workers. An acetyl group on the N-terminal alpha-amino function cancels the N-cap effect and the acetyl group is equivalent to N-terminal asparagine in an unacetylated peptide. Our results demonstrate a close relationship between the mechanisms of alpha-helix formation in peptides and in proteins.